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1 Introduction

This paper studies the bargaining between one active player and N passive players on how to

share the added value of a joint project that requires the cooperation of all parties. Relevant

real-life situations include a real estate developer buying pieces of land from multiple owners,

an employer trying to reach deals with several labor unions, and a firm acquiring a series of

complementary patents, etc. A common feature of these situations is that the active player

has to reach agreement with all of the passive players, who do not bargain with one another.

In contrast to most of the literature, which assumes exogenously fixed bargaining proto-

col, i.e., the ordering of bilateral bargaining rounds (between the active player and a passive

player) and the duration of each bargaining round, in our model, the bargaining protocol

is endogenously determined. More specifically, in each bargaining period, the active player

chooses which passive player to bargain with; if no agreement is reached in the current pe-

riod, the active player can either continue to bargain with the same passive player or move

on to any other player in subsequent periods.

Another new feature of this model is that the passive players are, in general, hetero-

geneous in terms of their bargaining power. As in Rubinstein (1982), the right to make

a proposal is the source of bargaining power, and the passive players differ in terms of the

probability with which they are recognized as the proposer when they bargain with the active

player.

A binding contract is signed once an agreement is reached between the active player

and a passive player. Following the existing literature, we consider two types of contracts:

contingent contracts and cash-offer contracts. With the former, the passive player receives

the agreed payment only after the active player has reached agreement with all of the passive

players and the project is finally implemented; with the latter, he is paid immediately upon

agreement being reached.1

We aim to answer the following questions. (1) What bargaining protocols can emerge

endogenously in equilibria, and of these protocols, which produces the greatest payoff for

1Throughout the paper, the active player is referred to as “she” and a passive player as “he”.
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the active player? (2) Which bargaining protocol is more plausible in terms of its simplicity

and/or stationarity? (3) Finally, how are these conclusions influenced by the type of contract

available to the players?

With contingent contracts, the bargaining game admits a rich set of equilibria. First, the

equilibrium outcomes under different fixed bargaining protocols can arise in equilibria with

endogenously determined protocols. Various beliefs about future actions off the equilibrium

path result in different agreements being reached on the equilibrium path. For example, one

sequence of agreements may result from the belief that the active player will never switch to

another passive player until an agreement is reached, and a different sequence of agreements

from the belief that she will alternate among all of the remaining passive players. In each

equilibrium, the belief is correct, that is, it is indeed optimal for the active player to never

switch or to alternate in case of temporary disagreement.

Moreover, there exist equilibria in which the active player plays one passive player off

against another, namely, skimming equilibria. As the players become extremely patient, the

active player’s greatest equilibrium payoff from a skimming equilibrium can be arbitrarily

close to what she could obtain in a bilateral bargaining with the weakest passive player.

The main effect of using cash-offer contracts is that the payments made in earlier bar-

gaining periods become sunk costs for the active player, and the total surplus in subsequent

bargaining remains the same. It is shown here that, in general, there exists no equilibrium in

which the active player alternates among passive players. This finding is rather important, as

alternate protocol is often presumed in the existing literature. Furthermore, with cash-offer

contracts, impasse is an equilibrium outcome when the number of passive players is large,

whereas it never occurs in equilibrium with contingent contracts.

For its strategic simplicity, we further restrict our attention to the Markov equilibrium of

the bargaining game. It is shown that, in our model, anyMarkov equilibriummust be efficient

in contrast to models with fixed protocols. The set of Markov equilibria depends on which

type of contract is adopted: with contingent contracts, there is a unique Markov equilibrium

in mixed strategies, whereas there are multiple Markov equilibria in pure strategies with
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cash-offer contracts. A particularly important finding is that, with cash-offer contracts, the

active player obtains her greatest equilibrium payoff by negotiating with the passive players

in ascending order of their bargaining power.

A model with endogenous protocol is more realistic than those with fixed protocols be-

cause, in reality, bargaining is rarely conducted according to some pre-determined protocol.

If an active player can commit to a certain bargaining protocol, she will certainly choose the

one that maximizes her equilibrium payoff. Even without such a commitment, if the same

active player has to bargain with different sets of passive players over time, she will have

the incentive to build up a reputation for sticking to a certain protocol. Therefore, from

the policy maker’s viewpoint, it may be useful to impose certain regulations on bargaining

protocol to protect the passive players’ interests and to reduce the likelihood of inefficient

bargaining behavior.

Related Literature. Early research on one-to-many bargaining often assumes a fixed

bargaining protocol.2 This paper is most closely related to Cai (2000, 2003). Cai (2000)

studies the bargaining between a railroad company and N farmers with cash-offer contracts.

The farmers are located on a circle with fixed ordering. Each bargaining round between the

company and one farmer consists of two periods in which each party makes one offer. If no

agreement is reached, the company moves on to the next farmer on the circle. It is shown that

there are multiple equilibria with endogenously determined orders of reaching agreement.

Inefficient delays may arise in equilibria that satisfy a weak stationarity condition. In a later

study, Cai (2003) considers a similar model with contingent contracts, showing that there are

multiple Markov equilibria, some of which entail inefficient delays. A crucial feature of this

study is that the active player moves on to another passive player after the rejection of her

own offer. If, instead, the passive player makes the final offer in each bargaining round, then

the multiplicity result does not hold.3 This observation shows how sensitive the equilibrium

2See, for example, Jun (1987), Horn and Wolinsky (1988), and Stole and Zwiebel (1996).
3More precisely, in Cai’s (2003) model, if the order of making offers is reversed in each bargaining round,

then there is a unique equilibrium in which the nth passive player in the queue obtains a share close to 1/2n

as δ goes to 1. It is equivalent to the equilibrium with a sequential protocol in our model.
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outcome is to the bargaining protocol.

Menezes and Pitchford (2004) address the holdout problem in a model with one buyer

and multiple sellers. They demonstrate that the complementarity of the buyer’s technology

is a necessary condition for equilibrium holdout. Roy Chowdhury and Sengupta (2009)

consider a simultaneous bargaining protocol to investigate the role of protocol transparency

in overcoming the inefficiency due to holdout. With endogenously determined protocol, our

model always admits efficient equilibria; thus, the holdout problem seems to be an artifact

of an assumed bargaining protocol.

There has also been a number of studies that attempt to endogenize bargaining protocol

in various settings.4 Noe and Wang (2004), for example, consider the bargaining between

one buyer and two sellers with a general value structure and endogenous ordering. They

investigate the strategic role played by the confidentiality of the bargaining ordering. An

important insight is that, by conducting private negotiations, the buyer can create strategic

uncertainty, by which she may obtain a greater equilibrium payoff than she would in public

negotiations.5

A crucial feature of Noe and Wang’s model is that the buyer bargains with each seller

only once; thus, when the bargaining ordering is public or in pure strategy, there is a unique

equilibrium by backward induction. In our model, the active player can bargain with a

passive player repeatedly until agreement is reached, and she also has greater degrees of

freedom in choosing the bargaining protocol. Thus, although we focus on public negotiations,

multiple equilibria still arise. More importantly, the uncertainty-induced payoff advantage

for the buyer also hinges on the assumption of one-shot bargaining. Without a deterministic

4Board and Zwiebel (2005) study a finite-horizon bilateral bargaining model in which the players compete

for the right to make a proposal via auction. They show that the alternating-offers protocol may arise in

equilibrium. Suh and Wen (2009) consider a multilateral bargaining model in which any pair of players can

bargain with each other for a partial bilateral agreement. The players have to agree on who will leave the

bargaining after each round; hence, the protocol is endogenously determined.
5This model is nicely extended by Krasteva and Yildirim (2010), who examine the joint effects of confi-

dentiality and offer deadlines.
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deadline, a seller can always choose to hold out until he is the last one to reach agreement;

thus, the buyer cannot benefit from conducting private negotiations.

The rest of the paper is organized as follows. Section 2 outlines the one-to-many bargain-

ing model with endogenous protocol. Section 3 analyzes the bargaining game with contingent

contracts, and Section 4 considers cash-offer contracts. Section 5 discusses the implications

of the results for the pattern of unionization in Horn and Wolinsky’s (1988) framework.

Section 6 contains further discussion and concludes the paper.

2 A Bargaining Model with Endogenous Protocol

There are N +1 players: active player A and N passive players indexed by i ∈ {1, 2, ..., N}.

Player A has a project with a commonly known surplus normalized to one. To undertake this

project, she needs the cooperation of all of the passive players. Hence, player A has to bargain

with each passive player over the payment to be made in exchange for his cooperation.

The bargaining takes place over time divided into periods of equal length. In each period

t ∈ {0, 1, 2, ...}, player A first chooses with whom to bargain. Then, either player A or the

chosen player i makes an offer, and the other party responds with acceptance or rejection.

The offer is simply the size of the payment that player i shall receive. If the offer is accepted,

the two parties sign a binding contract, and player A moves on to bargain with the other

passive players; if it is rejected, bargaining proceeds in the next period, and player A again

chooses with whom to bargain. After player A has reached agreement with all of the passive

players, the project is implemented immediately and the surplus is realized.

In each bargaining period, the proposer is randomly selected. More precisely, the proba-

bility that player i is recognized as the proposer is pi ∈ (0, 1), and the probability that player

A is recognized is 1− pi.6 As the allocation of the right to make a proposal determines the

relative bargaining power in a noncooperative bargaining framework, recognition probability

6We ignore the uninteresting cases with pi = 0 or 1 for some i. More specifically, if pi = 0, then player

i has no influence at all on the bargaining outcome; if pi = 1, then player A weakly prefers impasse to any

other bargaining outcome.
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pi is the measure of the relative bargaining power of player i with respect to player A.

A bargaining outcome is denoted by (si, ti)
N
i=1, where si ∈ [0, 1] is the agreed payment

to player i, and ti is the period in which this agreement is reached. Let T = maxi {ti} be

the date on which the final agreement is reached. As it takes at least N periods to reach

agreement with all of the passive players, the bargaining outcome is inefficient if and only if

T > N − 1. All players discount future payoffs with a common discount factor δ ∈ (0, 1).

We consider two different types of contracts: a contingent contract, by which a passive

player receives his payment only after agreement has been reached with all players and the

project is finally implemented, and a cash-offer contract, by which a passive player receives

his payment right away. With contingent contracts, player i’s payoff from outcome (si, ti)
N
i=1

is δTsi, and player A’s is δ
T
³
1−

PN
i=1 si

´
. If there is an impasse, i.e., T = ∞, then the

project is not implemented and everyone gets a payoff of zero. With cash-offer contracts,

player i receives his payment si in period ti, and thus his payoff is δ
tisi and player A’s is³

δT −
PN

i=1 δ
tisi
´
. In this case, if the bargaining encounters an impasse before any agreement

has been reached, then everyone gets a payoff of zero; if some agreements have been reached

prior to an impasse, then player A’s payoff is negative, as the agreed payments have been

made and thus become sunk costs. Clearly, this would not happen in any equilibrium.

The bargaining game described above is a well-defined extensive form game with perfect

information and nature’s move. Histories and strategies can be defined as usual. We adopt

the subgame perfect equilibrium (henceforth equilibrium) as the solution concept. After the

first N − 1 agreements have been reached, the bargaining between player A and the last

passive player becomes a simple variant of the Rubinstein game. It is well known that this

game has a unique equilibrium with immediate agreement, as stated in the following Lemma.

Lemma 1 If player A has reached agreement with every passive player j 6= i on sj, then

in the continuation game between player A and player i, there is a unique equilibrium: (i)

with contingent contracts, player A (player i resp.) offers si = δpi
³
1−

P
j 6=i sj

´
(ŝi =

[1− δ (1− pi)]
³
1−

P
j 6=i sj

´
resp.), and the offer is accepted; (ii) with cash-offer contracts,

player A (player i resp.) offers si = δpi (ŝi = 1− δ (1− pi) resp.), and the offer is accepted.
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Note that with contingent contracts, the previously agreed payments are contingent upon

the final agreement. Hence, in the final round, on the bargaining table is the total surplus

less the sum of the agreed payments. With cash-offer contracts, however, payments are made

immediately upon agreement and thus become “sunk” from the perspective of the remaining

passive players. Hence, the total surplus in the final bargaining round remains one.

3 Contingent Contracts

In this section, we characterize the equilibria of the bargaining game with contingent con-

tracts. An immediate observation is that impasse is never an equilibrium outcome.

Lemma 2 With contingent contracts, impasse is not an equilibrium outcome.

Proof. Denote by Rk the remaining surplus after the first k ∈ {0, 1, ..., N − 1} agree-

ments in any equilibrium. By definition, R0 = 1. If RN−1 > 0, then, by Lemma 1, player

A and the last passive player reach an immediate agreement, by which both receive positive

payoffs. Next, using backward induction and the assumption of 0 < pi < 1, it is easy to

establish that if Rk > 0, then 0 < Rk+1 < Rk for any k ∈ {0, 1, ..., N − 2}. The key step is

to note that a passive player will never reject an offer greater than δRk and the active player

will never reject a demand less than (1− δ)Rk. Hence, with contingent contracts, impasse

is never an equilibrium outcome.

In the following, it is first shown that various bargaining protocols may arise in equilibria

sustaining different sets of agreements.7 Then, we provide a general formulation of bargaining

protocol. Finally, we examine the properties of Markov equilibria. For expositional ease, the

rest of this section focuses on the case with two passive players. All of the results can easily

be extended to the case with N ≥ 3 passive players.
7The equilibrium characterization focuses on efficient equilibria. After the multiplicity of efficient equi-

librium outcomes is established, it is straightforward to construct equilibria with an inefficient delay.
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3.1 Equilibria with Different Underlying Protocols

Different equilibrium agreements can be sustained by different conjectured underlying bar-

gaining protocols. In equilibrium, the conjecture is correct; in other words, it is optimal for

the active player to stick to that protocol. Two common protocols used in one-to-many bar-

gaining are sequential and alternate protocols. With the former, the active player bargains

with the passive players one after another according to a pre-specified order, and she never

moves on to another passive player before reaching agreement with the current one. With

the latter, in contrast, the active player alternates among the passive players, that is, if no

agreement is reached in the current period, she will bargain with another passive player in

the next period. In our model, both protocols may emerge in equilibrium.

We first describe an equilibrium, referred to as equilibrium with a sequential protocol, in

which the active player will never switch bargaining opponent until the first agreement has

been reached. More precisely, on the equilibrium path, player A randomly chooses one of

the passive players to begin with, and they reach agreement immediately. Before the first

agreement has been reached, any passive player chosen to bargain in period t believes that

he will bargain with player A again in period t+1 if no agreement is reached in the current

period.

In bargaining for the first agreement, player i always asks for 1− δ (1− pi) and accepts

any offer that is no less than δpi, and player A always offers δpi and accepts any demand no

greater than 1− δ (1− pi). After the first agreement is reached, player A and the remaining

passive player immediately reach agreement as specified in Lemma 1. Thus, there are two

equilibria with sequential protocol, depending on who reaches the first agreement. Whereas

both passive players would prefer to be the first to bargain, player A’s expected payoff is

δ (1− p1) (1− p2) in both equilibria. Hence, she is indifferent about which passive player she

bargains with for the first agreement, and she also has no incentive to switch to another player

during the bargaining process, which justifies the aforementioned passive player’s belief. It

also implies that any ordering of the passive players can be sustained in an equilibrium with

a sequential protocol. Hence, we have the following proposition.
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Proposition 1 With contingent contracts, any ordering of the passive players can be sus-

tained in an equilibrium with a sequential protocol.

The following corollary shows that, of all possible equilibria, the active player obtains

the smallest expected payoff from that with a sequential protocol. By the same token, the

passive player who reaches the first agreement with the active player obtains the greatest

expected payoff in this equilibrium.

Corollary 1 With contingent contracts, player A’s expected equilibrium payoff is at least

δ (1− p1) (1− p2), and player i’s is at most δpi.

Proof. With contingent contracts, an agreed conditional payment can be equivalently

viewed as a share of the realized surplus when the project is implemented. Lemma 1 shows

that if player A reaches the first agreement with player i on a share of s∗i , then her expected

share in the continuation game is (1− pj) (1− s∗i ). If player i’s expected share in any equilib-

rium is no greater than pi, i.e., Es∗i ≤ pi, then player A’s expected share in any equilibrium

must be no less than (1− p1) (1− p2), i.e., Es∗A ≥ (1− p1) (1− p2).

Denote as Mi the supremum of player i’s expected equilibrium share, and denote as Rm

the infimum of the expected remaining share after the first agreement; that is, Es∗i ≤ Mi

and Es∗A ≥ (1− pj)Rm. The following inequalities are self-explanatory:

Rm ≥ (1− pi) (1− δMi) + piδRm and

Mi ≤ (1− pi) δMi + pi (1− δRm) ,

by which we obtain Mi ≤ pi. Thus, Es∗A ≥ (1− p1) (1− p2). It follows that player A’s

expected equilibrium payoff is at least δ (1− p1) (1− p2) and player i’s is at most δpi.

If there are N passive players with identical bargaining power pi = 1/2, as is often

assumed in the literature, then the active player’s expected share in an equilibrium with a

sequential protocol is 1/2N , which is less than that of all but one of the passive players. This

equilibrium outcome is not renegotiation-proof because player A, after reaching the final
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agreement, has the incentive to renegotiate the first one.8

Next, we describe a renegotiation-proof equilibrium, referred to as equilibrium with an

alternate protocol, in which the active player alternates in the choice of whom to bargain

with. In other words, if player A bargains with player i in period t, then she will switch to

player j 6= i in period t+1 regardless of whether agreement has been reached. In bargaining

for the first agreement, player i always asks for ŝi and accepts any offer that is no less than esi,
and player A always offers esi and accepts any demand no greater than ŝi. In the equilibrium,
the following indifference conditions hold:

esi = δpi [(1− pj) (1− esj) + pj (1− ŝj)] and

(1− pj) ŝi = δ (1− pi) [(1− pj) (1− esj) + pj (1− ŝj)] ,

by which we obtain

esi = δpi (1− pj)

1− δp1p2
and ŝi =

(1− δ) + δpi (1− pj)

1− δp1p2
.

After the first agreement has been reached, player A and the remaining passive player im-

mediately reach agreement, as specified in Lemma 1. Being the first one to reach agreement,

player i’s expected share is

E
¡
siji
¢
=

pi (1− δpj)

1− δp1p2
,

where the superscript ij refers to the order of reaching agreement. If player i is the second

one to reach agreement, then his expected share is

E
¡
sjii
¢
=

pi (1− pj)

1− δp1p2
.

Again, each passive player would prefer to be the first one to reach agreement. However, as

δ tends to 1, the difference between E
¡
siji
¢
and E

¡
sjii
¢
vanishes. It is also easy to check

that player A’s expected share is

E (sA) =
(1− p1) (1− p2)

1− δp1p2
.

8Stole and Zwiebel (1996) explicitly incorporate renegotiation-proofness into their bargaining model and

obtain a unique noncooperative equilibrium outcome that is equivalent to the Shaley value of the corre-

sponding cooperative game.
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Thus, player A is indifferent about her choice of bargaining opponent in period 0, moreover,

were there a disagreement, she would have no incentive to deviate from the alternate protocol.

Proposition 2 With contingent contracts, any ordering of the passive players can be sus-

tained in an equilibrium with an alternate protocol.

Conceivably, there exist equilibria with general alternate protocols, by which the active

player bargains with player i for Ti periods before switching to player j. The equilibrium

agreements can be derived in a similar way. For any finite T1 and T2, it is easy to see that the

equilibrium outcome converges to the same limit as the equilibrium with the basic alternate

protocol (i.e., T1 = T2 = 1).

Clearly, the active player obtains a greater payoff in an equilibrium with an alternate

protocol than in one with a sequential protocol.9 Could the active player’s equilibrium

payoff be even greater? Cai (2003) specifies a Markov equilibrium in which player A’s payoff

goes to 3/8 as δ goes to 1. Recall that in his model, the switch to a different passive player

is made after the rejection of player A’s offer. Hence, it may be more costly for a passive

player to reject an offer than for player A to do so. More precisely, player A’s rejection

causes one period of delay, whereas a passive player’s rejection causes three periods of delay

if no agreement will be reached in the next bargaining round, which translates into a relative

bargaining power ratio of 1 : 3. Therefore, as δ tends to 1, one passive player’s equilibrium

share can be forced down to 1/4, whereas player A and the other passive player split the

remainder of the pie equally. With an endogenous bargaining protocol, the active player can

further exploit this “skimming” effect.

We now describe a skimming equilibrium. Player A bargains with player 1 in period 0.

She will switch to player 2 if her offer is rejected and will switch back after T ≥ 1 periods of

bargaining with player 2, during which no agreement will be reached.10 Taking this as the

9If p1 = p2 = 1/2, then the equilibrium with an alternate protocol induces an equal split among all three

players as δ tends to 1.
10More specifically, during the T periods of bargaining with player 2, each party makes non-serious offers

so that no agreement can be reached.
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underlying protocol, player A and player 1 will reach immediate agreement on either

es1 = 1− (1− p1) δ
T+1

p1 + (1− p1)
PT

t=0 δ
t

if player 1 proposes, or

ŝ1 =
δT+1p1

p1 + (1− p1)
PT

t=0 δ
t

if player A proposes.

The T periods of fruitless bargaining with player 2 serve as punishment for player 1. If

player A deviates during this punishment by switching back early, then the continuation

equilibrium is the one with a sequential protocol in which player 1’s expected share is p1.

Player 2 has the same interest as player A in carrying out the punishment. Thus, the length

of punishment, T , is chosen such that

δT+1 [(1− p1) (1− ŝ1) + p1 (1− es1)] ≥ δ (1− p1) ,

where the left-hand side is the total payoff that player A and player 2 receive from carrying

out the punishment, and the right-hand side is their total payoff from deviating from it. The

condition can be simplified as

δT ≥ (1− p1) + p1
³XT

t=0
δt
´−1

.

Observe that, for any T ≥ 1, the foregoing condition is satisfied when δ is sufficiently close

to 1, which leads to the following proposition.

Proposition 3 With contingent contracts, for any integer T ≥ 1, there is a skimming

equilibrium, as described above, when δ is sufficiently close to 1.

As δ tends to 1, the maximal T in a skimming equilibrium tends to infinity; thus, player

1’s minimal expected share tends to zero and player A’s maximal expected share tends to

1− p2. Similarly, player A can play player 1 off against player 2, and her maximal expected

share tends to 1 − p1 in the limit. Hence, when the players are extremely patient, the

active player’s greatest equilibrium payoff is arbitrarily close to what she could obtain from

a bilateral bargaining with the weakest passive player. At the same time, a passive player’s

smallest equilibrium payoff tends to 0.
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Corollary 2 With contingent contracts, as δ tends to 1, the upper bound of the active

player’s expected equilibrium payoff tends to 1 − min {p1, p2}, and the lower bound of each

passive player’s expected equilibrium payoff tends to 0.

3.2 A General Formulation

Although we have established the upper and lower bounds of each player’s equilibrium payoff,

our characterization of the equilibrium bargaining protocols is far from exhaustive. We now

provide a general formulation of bargaining protocol and show that there is a vast multiplicity

of equilibrium bargaining protocols.

Each session of consecutive bargaining periods with a specific passive player is now re-

ferred to as a bargaining round. Denote an underlying bargaining protocol as a sequence

of natural numbers {Ks}∞s=1, where Ks is the number of periods that the sth bargaining

round lasts before any agreement is reached.11 When s is odd (even resp.), bargaining takes

place between player A and player 1 (player 2 resp.). If an agreement is reached during any

round of the bargaining, the active player immediately switches to another passive player to

bargain over the remaining surplus.

Note that K1 = 0 if player A chooses player 2 in period 0. Meanwhile, if K1 = 0, then

it must be that K2 > 0. To accommodate the sequential protocol, we allow Ks = ∞. For

example, K1 = ∞ (or K1 = 0 and K2 = ∞) if player A adopts the sequential protocol

starting from player 1 (or player 2). The basic alternate protocol corresponds to Ks = 1 for

any s.

This formulation specifies only the active player’s reduced strategies. For example, if

Ks =∞, then it does not specify Ks0 for any s0 > s. It suffers no loss of generality though,

once we assume that following the active player’s deviation from the equilibrium protocol, the

continuation equilibrium will be one with a sequential protocol. As the active player obtains

the smallest payoff in equilibria with a sequential protocol, this constitutes the most severe

11If no agreement has been reached after Ks periods, bargaining enters the (s+ 1)
th round, which lasts

for at most Ks+1 periods.
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equilibrium punishment, which sustains the largest possible set of equilibrium protocols.

Finally, it is important to note that this formulation does not include the protocol adopted

in a skimming equilibrium, in which the decision about whether to switch to another passive

player depends on who has rejected the offer. A bargaining protocol in the form of {Ks}∞s=1
is considered to be history-independent.

Proposition 4 With contingent contracts, any bargaining protocol in the form of {Ks}∞s=1
can be sustained in an equilibrium, and there is a unique sequence of equilibrium agreements

associated with this protocol.

Proof. As explained above, it is easy to sustain an arbitrary bargaining protocol in an

equilibrium as any deviation from the protocol will be punished by switching to an equilib-

rium with a sequential protocol, in which the active player receives her smallest payoff. See

the Appendix for the uniquely determined equilibrium outcome associated with an arbitrary

protocol.

A closely related question is what would be the equilibrium outcome in a model with a

fixed protocol in the form of {Ks}∞s=1. For regular protocols, such as sequential and alternate

protocols, it is easy to derive the equilibrium outcome. Doing so becomes more complicated

when the bargaining protocol is irregular.12 For example, with {Ks = s}∞s=1, the number of

periods in each bargaining round increases uniformly, and it is not immediately clear what

the equilibrium agreements would be. The main difficulty is that we cannot establish a closed

loop of indifference conditions as with the sequential or alternate protocol. Although our aim

here is to characterize the set of self-enforcing bargaining protocols, our result also provides

an answer to this question. A rather surprising finding is that any irregular bargaining

protocol is associated with a unique equilibrium outcome that converges to the same limit

as the equilibrium with the basic alternate protocol.

12See the Appendix for the categorization of regular and irregular bargaining protocols.

15



3.3 Markov Equilibria

When a bargaining game has multiple subgame perfect equilibria, stationary or Markov equi-

librium is often proposed as a plausible refinement on the grounds that strategic simplicity is

a desirable feature of equilibria.13 In the one-to-many bargaining setting, the number of re-

maining passive players changes during the bargaining process, and thus Markov equilibrium

is the proper solution concept.

A Markov strategy is a strategy that depends only on payoff-relevant variables. In the

current model, these include the number of passive players who have not reached agreement

and the remaining surplus. Thus, the active player’s strategy is Markovian if among the

same set of remaining passive players and with the same available surplus, (i) she always

chooses the same one to bargain with or randomizes with the same probabilities, and (ii) in

bargaining with a specific passive player, she always makes the same offer and accepts the

same set of demands. A Markov equilibrium is a subgame perfect equilibrium in Markov

strategies.14 Lemma 3 establishes the efficiency of any Markov equilibrium.

Lemma 3 A Markov equilibrium of the bargaining game with contingent contracts must be

efficient.

Proof. Lemma 2 shows that with contingent contracts, impasse is not an equilibrium

outcome. If a Markov equilibrium involves an inefficient delay and the first agreement is

reached in period t > 0, then player A can deviate by truncating her strategy from period

t. Then, the same sequence of agreements will be reached without any delay, as all players

adopt Markov strategies. The deviation is obviously profitable.

In Cai (2003), when there are two passive players, the game has three Markov equilibria

for a sufficiently large discount factor, and one of them is inefficient. Lemma 3 suggests

13Herrero (1985) shows that in the N -player Rubinstein bargaining game, there is a unique stationary

subgame perfect equilibrium. The restriction to stationary strategies (to obtain uniqueness) is sometimes

considered problematic (see, for example, the discussion in Osborne and Rubinstein [1990]).
14The definition of Markov equilibrium does not preclude a player from deviating to non-Markovian strate-

gies, but requires that no player can benefit from such a deviation.
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that the inefficient Markov equilibrium is an artifact of the assumed bargaining protocol.

More precisely, in Cai (2003), although the order of reaching agreement is endogenously

determined, the bargaining order is exogenously given, and delay occurs when the two orders

are inconsistent.

Lemma 4 With contingent contracts, no Markov equilibrium exists in pure strategies.

Proof. In a Markov equilibrium in pure strategies, player A always bargains with the

same passive player, say player 1, for the first agreement. Thus, the outcome should be the

same as in an equilibrium with a sequential protocol. However, if player A deviates to player

2, then the latter would expect the former to switch back to player 1 if no agreement were

reached in the current period. Hence, player 2 would be willing to accept any offer greater

than δ (1− p1) p2, and player A to accept player 2’s demand if it is less than 1− δ (1− p2).

This makes the deviation profitable for player A.

Lemma 4 implies that equilibria with a sequential or alternate protocol are not Markov

equilibria. Particularly, in an equilibrium with a sequential protocol, once the active player

deviates and bargains with another passive player, it is crucial that the latter believes that

the former will not switch again until agreement is reached, whereas a Markov equilibrium

(in pure strategies) requires that after any history the active player chooses the same passive

player to bargain with. The following proposition specifies the unique Markov equilibrium

in mixed strategies.

Proposition 5 With contingent contracts, there is a unique Markov equilibrium in mixed

strategies in which the active player chooses each passive player with equal probability in each

period before the first agreement is reached.

Proof. See the Appendix.

In the unique Markov equilibrium, the active player always randomly chooses a passive

player with probability 1/2 regardless of the heterogeneous bargaining power. As δ tends to

1, the Markov equilibrium outcome converges to the same limit as that of equilibria with an

17



alternate protocol. Finally, the mixed-strategy equilibrium is robust in the following sense.

If the passive players believe that the active player chooses player 1 with probability q > 1/2,

then player 1 will ask for a greater offer and player 2 will reduce his demand, which, in turn,

induces the active player to reduce q.

The fact that there is no Markov equilibrium in pure strategies raises the question of

whether the Markov equilibrium notion is too restrictive in the current setting. Alternatively,

we can also include the identity of the current bargaining opponent as a state variable; then,

whether to switch to another opponent and which one to switch to are the decisions to

make. It is easy to see that the equilibria with either sequential or alternate protocol become

Markovian after the introduction of this extra state variable.

4 Cash-Offer Contracts

In many real-life situations, only a binding cash-offer contract is feasible. For example, in

Coase’s (1960) well-known railroad example, it is reasonable to assume that the negotiating

parties are limited to cash-offer contracts. In fact, the recent literature on one-to-many

bargaining has mainly focused on cash-offer contracts. This section presents the equilibrium

characterization with this type of contract. The analysis is in the same vein as that in the

previous section except that we defer our discussion of impasse as a possible equilibrium

outcome to the end of the section.

For an arbitrary ordering of passive players, there is an equilibrium with a sequential

protocol. Let player 1 be the one to reach agreement first. Player A and player 1 are

effectively bargaining over a surplus of (1− p2) because p2 will be the expected payment to

player 2 in the continuation equilibrium. Thus, in the equilibrium, player A offers δp1 (1− p2)

and player 1 asks for [1− δ (1− p1)] (1− p2). Once chosen to bargain, player 1 believes that

player A will not switch to another player until an agreement has been reached. At the same

time, if player A deviates by switching to player 2 before reaching the first agreement, then

player 2 believes that she will switch back to player 1 in the next period.15

15This represents a subtle difference from the contingent contract case, in which whomever is chosen to
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Note that although every ordering of passive players can be sustained in an equilibrium

with a sequential protocol, player A obtains a greater expected payoff by bargaining with

the weaker passive player first. This difference in payoffs vanishes when δ tends to 1.

Proposition 6 Among all equilibria with a sequential protocol, player A obtains the greatest

payoff when she bargains with the passive players in ascending order of bargaining power.

Proof. Straightforward calculation.

Recall that with contingent contracts, the active player obtains the smallest payoff in the

equilibria with a sequential protocol. The case is different here. The active player obtains an

even smaller payoff in an equilibrium with an alternate protocol when it exists, and impasse

may occur when there are three or more passive players. Also, with contingent contracts, each

passive player would prefer to be the first to reach agreement under a sequential protocol;

here, in contrast, a passive player is better off being the last to reach agreement.

More interestingly, our next proposition shows that, with cash-offer contracts, in general

there exists no equilibrium with an alternate protocol. Put alternatively, the alternate

protocol is not self-enforcing in this case.

Proposition 7 With cash-offer contracts, for δ sufficiently close to 1, there exists no equi-

librium with an alternate protocol if either p1 + p2 > 1 or p1 6= p2.

Proof. See the Appendix.

Being the second to reach agreement, player i receives an expected payment of pi. Thus,

in an equilibrium with an alternate protocol, if player i is chosen to bargain in period 0, then

he will reject any offer less than δ2pi. When p1 + p2 > 1, there exists no equilibrium with

an alternate protocol when δ is sufficiently close to 1 because the active player’s payoff from

such an equilibrium would be negative.

When p1 = p2 ≤ 1/2, there is an equilibrium with an alternate protocol for any δ ∈ (0, 1).

The active player has no preference about which passive player to bargain with first. However,

bargain believes that player A will not switch again before reaching an agreement.
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this is only a non-generic case. More generally, when p1 6= p2 and p1+p2 ≤ 1, there exists no

equilibrium with an alternate protocol for any δ ∈ (0, 1). The reason is that the active player

always finds it optimal to bargain with the stronger passive player, say player 1, first. Thus,

after a disagreement with player 1, player A will not switch to player 2 in the following

period. This deviation cannot be punished, as player A is already receiving her smallest

payoff in the assumed equilibrium with an alternate protocol.

Finally, it is straightforward to construct skimming equilibria with cash-offer contracts.

Recall that the key step is to ensure that it is optimal for the active player to carry out

the punishment imposed on a passive player. With cash-offer contracts, doing so actually

becomes even easier, as the lower bound of the active player’s equilibrium payoff is smaller

than that with contingent contracts.

Markov Equilibria. With cash-offer contracts, the equilibrium with a sequential pro-

tocol is a Markov equilibrium. However, this equilibrium differs from that with contingent

contracts in terms of what happens off the equilibrium path. More specifically, if the active

player deviates and bargains with another player, then this player believes that the active

player will switch back in the following period, and thus no agreement can be reached and

the deviation is not profitable.

Proposition 8 With cash-offer contracts, there are multiple Markov equilibria for any δ ∈

(0, 1): (i) every equilibrium with a sequential protocol is a Markov equilibrium in pure strate-

gies; (ii) when p1 + p2 ≤ 1, there is also a Markov equilibrium in mixed strategies.

Proof. Part (i) has been explained above. See the Appendix for Part (ii).

In the mixed-strategy Markov equilibrium, player A randomizes the choice of passive

player in each period, and each player i is chosen with probability

q∗i =
1− pi

(1− p1) + (1− p2)
.

As δ tends to 1, player i’s expected payoff tends to pi, and player A’s expected payoff tends

to 1− p1 − p2.
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Note that player i’s demand depends on his belief about the probability that he will be

chosen to bargain in each period. If player i’s perceived probability is higher than q∗i , then

his demand will be lower, and it then becomes profitable for player A to further increase the

probability of choosing player i. In this sense, the mixed-strategy equilibrium is not robust,

in contrast to the case with contingent contracts.

Impasse. As previously noted, with cash-offer contracts, impasse can be an equilibrium

outcome. It is easy to see that impasse cannot occur when there are only two passive

players.16 Lemma 5 shows that when the two passive players are endowed with sufficiently

high bargaining power, there is an equilibrium in which player A’s expected payoff is 0.

Lemma 5 In the game with two passive players and p1+p2 > 1, when δ is sufficiently close

to 1, there is an equilibrium in which player A’s expect payoff is 0.

Proof. Consider the following strategy profile. Player A randomly chooses a passive

player in period 0. Before any agreement has been reached, in each period t, player A offers

the chosen player i a payment of δ (1− pj), and accepts player i’s demand if it is no greater

than δ (1− pj); the chosen player i asks for δ (1− pj), and accepts any offer that is no

less than δ (1− pj); when there is a disagreement in period t, player A switches to another

passive player in period t+1 if and only if the disagreement is caused by her own deviation.

Following this strategy profile, player A’s expected payoff is 0.

It is easy to see that the chosen passive player cannot benefit from any possible deviation.

If player A offers player i less than δ (1− pj), then it is optimal for him to reject when

δ2pi > δ (1− pj). As p1 + p2 > 1, this is satisfied when δ is sufficiently close to 1.

When there are three passive players and pi + pj > 1 for any i 6= j, Lemma 5 shows

that in the subgame with two remaining passive players, there is an equilibrium in which the

active player’s expected payoff is zero. With this as the continuation equilibrium, impasse

16When a passive player anticipates an impasse in an equilibrium, he is willing to accept any positive offer,

and his acceptance will lead to an immediate agreement between the active player and the other passive

player, which upsets the impasse equilibrium.
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is an equilibrium outcome of the entire game because, if the active player agrees with any

passive player on a positive payment, then her expected payoff becomes negative.

In the game with two passive players, there are multiple equilibria from which the active

player obtains different payoffs. As in Cai (2000), we can construct an equilibrium for the

game with three passive players, in which the active player’s expected payoff is zero. This

is true even when
P3

i=1 pi < 1.17 Hence, impasse is always an equilibrium outcome when

N ≥ 4.

Proposition 9 When δ is sufficiently close to 1, impasse is an equilibrium outcome if (i)

there are at least four passive players or (ii) there are three passive players and pi + pj > 1

for any i and j.

Proof. See the Appendix.

When there are many passive players, impasse becomes a possible equilibrium outcome,

which gives the passive players an incentive to merge. Intuition suggests that weak negotiat-

ing parties have the incentive to merge to achieve high collective bargaining power, but here

we see that negotiating parties with high bargaining power may also be willing to merge to

ensure that agreement becomes possible.

5 Implications for Unionization

Horn and Wolinsky (1988) consider wage bargaining between an employer and two groups of

workers. Assuming that the employer alternates in negotiating with one of the two groups,

the bargaining game has a unique equilibrium. More importantly, when the two groups of

workers are close substitutes, they prefer to form an encompassing union and bargain collec-

tively; when they are strong complements, in contrast, they prefer to form two independent

unions and bargain separately. In this paper, we focus on the extreme case in which the

passive players are perfect complements. The existence of skimming equilibria suggests that

17In such an equilibrium, the passive player i reaching the first agreement may receive an expected payoff

greater than pi, which is impossible if player i is one of the two remaining passive players.
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in separate bargaining, the employer may play off one group of workers against the other

to reduce overall wages; thus, the two groups, even as perfect complements, still have the

incentive to bargain collectively.

To be more precise, consider two unions with possibly different bargaining power, p1 ≤ p2,

where pi is the relative bargaining power of union i when it bargains with the employer

independently. When the two unions merge, it is unclear how the bargaining power of the

encompassing union should be determined. Denote as p = g (p1, p2) ∈ (0, 1) the bargaining

power of the encompassing union. It is reasonable to assume that g (p1, p2) is greater than

and increasing with pi. As a special case, let us further assume that p = max {p1, p2} = p2.

Consider the following two-stage game. In stage 1, the two unions decide whether or not

to merge. A wage bargaining game with an endogenous protocol is played in the second

stage.18 If the two unions bargain separately, then the expected total wage in one skimming

equilibrium approaches p1 as δ tends to 1. If they merge and bargain collectively, then there

is a unique equilibrium in which the expected total wage is p2 for any δ ∈ (0, 1). Hence, if

the two unions have different bargaining power, i.e., p1 < p2, then, when δ is close to 1, there

is an equilibrium in which they merge in stage 1. Note that when the unions have the same

bargaining power, it can never be optimal for them to merge. In other words, unions with

highly asymmetric bargaining power are more likely to merge.

6 Further Discussion

This paper studies a one-to-many bargaining model in which the active player is endowed

with the power to choose which passive player to bargain with in each period. Various

bargaining protocols may arise as part of the active player’s equilibrium strategy. In our

model, the control over the protocol is highly asymmetric. Conceivably, there could be a

model in which the passive players also have some control over the protocol. For example, at

the beginning of each period, every passive player decides whether to make himself available

for bargaining. The active player then decides which of those available to bargain with. It

18It is reasonable to work with contingent contracts in wage bargaining.
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is not surprising that the set of equilibrium outcomes would then expand in favor of the

passive players. However, from a practical point of view, we believe that it is much easier

for the active player to “hide” from the passive players than the other way around.

In our model, the contract form is assumed to be exogenously given, which seems to be a

realistic description of many real-life situations. However, it would also be natural to wonder

what happens if the contract form is also endogenously determined. We argue that when

the players can choose between two types of contracts during the bargaining, contingent

contracts are more likely to be adopted than cash-offer contracts. To see this, consider the

case with two passive players. Suppose that in an equilibrium the first agreement is enforced

by a cash-offer contract. It could always be replaced with a contingent contract with different

terms, such that both parties will be better off if they are sufficiently patient. This is true

simply because the payment in a contingent contract will not become a sunk cost, and it

can force the remaining passive player to accept a smaller offer.

Finally, there are two potential modeling approaches to endogenizing bargaining protocol:

one is to allow the protocol to form and evolve during the negotiation process, and the other

is to let the negotiating parties choose and commit to a protocol prior to the negotiations.

Although this paper adopts the former approach, it would be interesting to explore the latter

approach in future research.
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Appendix

Proof of Proposition 4. (General Formulation of Bargaining Protocol)

The following two cases are referred to as regular protocols: (1)Ks∗ =∞ for some s∗, and

(2) there exist s∗ and l ≥ 1 such that Ks+2l = Ks for any s ≥ s∗. With a regular protocol,

the equilibrium outcome can be derived by backward induction. More specifically, in Case

1, starting from period t∗ = 1 +
Ps∗−1

s=1 Ks, the active player adopts a sequential protocol,

which determines a unique continuation equilibrium outcome. Then, in each period t < t∗,

the randomly selected proposer makes an offer such that the responder is indifferent between

accepting and rejecting. By backward induction, we can uniquely determine the equilibrium

outcome. In Case 2, starting from period t∗, the active player adopts a general alternate

protocol, which also has a unique equilibrium outcome. Then, backward induction applies

again. It is easy to see that in a general alternate protocol, as δ → 1, the equilibrium

outcome converges to the same limit as the equilibrium with the basic alternate protocol.

When {Ks}∞s=1 does not belong to these two cases, the main difficulty is that we cannot

establish a closed loop of indifference conditions as in the equilibrium with a sequential or

alternate protocol. We refer to such protocols as irregular protocols. Again, there are two

cases to be considered.

Case 3. For any T > 0, there exist s∗ such that Ks > T for some s > s∗. In other

words, the bargaining protocol approaches a sequential protocol as s → ∞. The example

with uniformly increasing length of bargaining rounds (Ks = s) belongs to this case.

Case 4. There exists T ∗ such thatKs ≤ T ∗ for any s > 0. Then there must exist a general

alternate protocol P ∗ and an unbounded sequence of ln (ln is even) consecutive bargaining

rounds (or, segment of length ln) such that the bargaining protocol {Ks}∞s=1 is consistent

with P ∗ on each segment. In other words, the bargaining protocol approaches P ∗ as s→∞.

Below it is shown that, as δ → 1, the equilibrium outcome associated with an irregular

protocol converges to the same limit as the equilibrium with the basic alternate protocol.

Without loss of generality, assume that K1 > 0.

Denote as (xsl , y
s
l ) the equilibrium offers made in the lth period of the sth round of the
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bargaining, where 1 − xsl is the offer to the passive player of the current round and 1 − ysl

is his demand. Let Bs
l = (1− pi) x

s
l + piy

s
l , where i = 1 (2 resp.) if s is odd (even resp.).

In each period, the randomly selected proposer makes an offer such that the responder is

indifferent between accepting and rejecting. It is easy to establish that

Bs
Ks
= (1− pi) +

δp1p2 (1− pi)

1− pj
Bs+1
1

and

Bs
l−1 = (1− δ) (1− pi) + δBs

l ,

by which we obtain

Bs
1 = (1− pi) +

δKsp1p2 (1− pi)

1− pj
Bs+1
1 .

Hence, we have

Bs
1 = (1− pi)

"
1 +

∞X
n=0

δDn (p1p2)
n+1

#
,

where

Dn =
nX
l=0

Ks+l.

As δ → 1, Bs
1 → (1− pi) / (1− p1p2), and it follows that

lim
δ→1

¡
1− x11

¢
= lim

δ→1

¡
1− y11

¢
=

p1 (1− p2)

1− p1p2
,

which is the limit of player 1’s expected payoff in the equilibrium with an alternate protocol.

Proof of Proposition 5. (Mixed-Strategy Markov Equilibrium: Contingent Contracts)

Formally, a mixed-strategy Markov equilibrium can be written as {q, (x1, y1) , (x2, y2)},

where q is the probability that player A chooses player 1 in each period, 1− xi is the offer

made to player i, and 1 − yi is his demand. In the equilibrium, each player is indifferent

between (1) accepting the current offer which leads to the conclusion of the bargaining in

the following period, and (2) rejecting the current offer, in which case the bargaining is

concluded two periods later.
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Thus, the following indifference conditions hold:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− x1 = δq [(1− p1) (1− x1) + p1 (1− y1)] + δ (1− q) p1 [(1− p2) x2 + p2y2]

1− x2 = δqp2 [(1− p1)x1 + p1y1] + δ (1− q) [(1− p2) (1− x2) + p2 (1− y2)]

(1− p2) y1 = δ [qEA1 + (1− q)EA2]

(1− p1) y2 = δ [qEA1 + (1− q)EA2]

where

EA1 = (1− p2) [(1− p1)x1 + p1y1]

EA2 = (1− p1) [(1− p2)x2 + p2y2] .

For q ∈ (0, 1), player A should be indifferent about her choice between player 1 and 2, i.e.,

EA1 = EA2 .

Hence, there are five unknowns and five equations. After tedious algebra, we obtain a

unique solution with q∗ = 1/2. Note that player A’s randomization probability does not

depend on δ and pi. As δ → 1, player A’s expected payoff goes to λ (1− p1) (1− p2) and

player i’s goes to λpi (1− pj), where λ = (1− p1p2)
−1.

Proof of Proposition 7. (Equilibrium with an Alternate Protocol: Cash-offer Contracts)

Suppose that there is an equilibrium with an alternate protocol, which can be formally

written as {(x1, y1) , (x2, y2)}, where 1− xi is the offer to player i, and 1− yi is his demand.

Then, the following indifference conditions hold:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1− x1 = δ2p1 and 1− x2 = δ2p2

δ (1− p2)− (1− y1) = δ
£
(1− p2)

¡
δ (1− p1)− δ2p2

¢
+ p2 (δ (1− p1)− (1− y2))

¤
δ (1− p1)− (1− y2) = δ

£
(1− p1)

¡
δ (1− p2)− δ2p1

¢
+ p1 (δ (1− p2)− (1− y1))

¤
,

from which we can solve for (x1, y1) and (x2, y2).

27



It is easy to check that player A’s expected payoff is

Eu12A =
δ (1− p1) (1− p2)− δ2p1p2 (1− p1)− δ3p1p2 (1− p2)

1− δ2p1p2

if player 1 is the first one to reach agreement, and it is

Eu21A =
δ (1− p1) (1− p2)− δ2p1p2 (1− p2)− δ3p1p2 (1− p1)

1− δ2p1p2

if player 2 is the first one to reach agreement. Moreover,

lim
δ→1

Eu12A = lim
δ→1

Eu21A = (1− p1 − p2)

and

Eu12A ≥ Eu21A if and only if p1 ≥ p2.

Hence, if p1+ p2 > 1, then the equilibrium with an alternate protocol is not viable when

δ is sufficiently close to 1, as player A would receive a negative payoff.

More importantly, if p1 6= p2, then the equilibrium with an alternate protocol is not

viable even when p1 + p2 < 1. This is because player A always finds it optimal to reach the

first agreement with the stronger passive player, say player 1. Thus, after a disagreement

with player 1, player A will not switch to player 2 in the following period. This deviation

cannot be punished because player A already receives her smallest payoff from the assumed

equilibrium.

Proof of Proposition 8. (Mixed-Strategy Markov Equilibrium: Cash-offer Contracts)

Formally, a mixed-strategy Markov equilibrium can be written as {q, (x1, y1) , (x2, y2)},

where q is the probability that player A chooses player 1 in each period, 1− xi is the offer

made to player i, and 1 − yi is his demand. Similar to the case with contingent contracts,

the following conditions hold:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− x1 = δq [(1− p1) (1− x1) + p1 (1− y1)] + δ2 (1− q) p1

1− x2 = δ (1− q) [(1− p2) (1− x2) + p2 (1− y2)] + δ2qp2

δ (1− p2)− (1− y1) = δ [qEA1 + (1− q)EA2]

δ (1− p1)− (1− y2) = δ [qEA1 + (1− q)EA2] ,

where

EA1 = (1− p1) [δ (1− p2)− (1− x1)] + p1 [δ (1− p2)− (1− y1)]

EA2 = (1− p2) [δ (1− p1)− (1− x2)] + p2 [δ (1− p1)− (1− y2)] .

In the mixed-strategy equilibrium, player A is indifferent about her choice between player 1

and 2, i.e., EA1 = EA2, which can be simplified as

(1− p1)x1 + p1y1 − δp2 = (1− p2)x2 + p2y2 − δp1.

Solving for q, we obtain

q∗ =
1− p1

(1− p1) + (1− p2)
.

As δ tends to 1, player i’s expected payoff tends to pi and player A’s tends to 1 − p1 − p2.

The equilibrium is viable for any δ ∈ (0, 1) when p1 + p2 ≤ 1.

The mixed-strategy equilibrium is not robust in the following sense. Let q be the passive

players’ belief about player A’s strategy, and 1− xi (q) and 1− yi (q) be player i’s smallest

acceptable offer under this belief. If q > q∗ (q < q∗ resp.), then, given xi (q) and yi (q), player

A finds it profitable to further increase (reduce resp.) q.

Proof of Proposition 9. (Impasse: Cash-offer Contracts)

It suffices to construct an equilibrium for the game with N = 3, in which player A’s

expected payoff is 0. It has been shown that, in the game with N = 2, there are multiple

equilibria in which player A obtains different payoffs. Denote as E1 (i, j) and E2 (i, j) two
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equilibria in the subgame with passive players i and j. Denote as Us (i, j) player A’s expected

payoff from Es (i, j). Without loss of generality, assume that U1 (i, j) > U2 (i, j) > 0.

Consider the following strategy profile in the game with three passive players i, j and k:

(1) Player A randomly chooses a passive player in period 0.

(2) In period t, player A offers δU2 (i, j) to the chosen player k and accepts player k’s

demand if and only if it is no greater than δU1 (i, j).

(3) If no agreement is reached in period t, player A chooses player k again in period t+1.

(4) In period t, the chosen player k asks for δU1 (i, j) and accepts any offer no less than

Vk, where Vk is his continuation payoff, i.e.,

Vk =
∞X
l=0

δl+2pk (1− pk)
l U1 (i, j) =

δ2pkU1 (i, j)

1− δ (1− pk)
.

(5) If player A’s offer is accepted by player k in period t, then the continuation equilibrium

is E2 (i, j); if player k’s demand is accepted, then the continuation equilibrium is E1 (i, j).

With this strategy profile, the first agreement is reached when player k is recognized as

a proposer for the first time, and then, E1 (i, j) is played. Player A’s expected payoff is 0.

To verify that the strategy profile is an equilibrium, first observe that player A is indifferent

about her choice of opponent to bargain for the first agreement, as her expected payoff is

always 0. Second, player A cannot make an offer that is greater than δU2 (i, j) because if

such an offer is made and accepted, player A’s expected payoff would be negative. Hence, it

remains to show that

δU2 (i, j) < Vk =
δ2pkU1 (i, j)

1− δ (1− pk)
.

When δ is sufficiently close to 1, the foregoing condition is satisfied.
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