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Abstract

This paper explores a dynamic model of adverse selection in which trading partners receive

noisy information. A monopolistic buyer wants to procure service. Seller’s cost depend on the

buyer’s type. The buyer contacts sellers sequentially and enters into a bilateral bargaining game.

Each seller observes the buyer’s offer. In addition, each seller observes a noisy signal. Contacting

sellers (search) is costly. We characterize equilibrium when search cost become small. In the

limit, the price will depend in a simple way on the curvature of the signal distribution. If signals

are suffi ciently strong, the limit outcome is equivalent to the full information outcome. (The

equilibrium is separating and prices are equal to the true cost.) If signals are weak, the limit

outcome is equivalent to an outcome with no information. (The equilibrium is pooling and

prices are equal to ex ante expected cost.)

Away from the limit, a dynamic model of adverse selection with noisy information has several

natural implications for the correlation between duration, quality, and prices. Most importantly,

in many equilibria it will be the "lemons" that stay in the market for a long time, while good

types trade fast. This is in accord with stylized facts about the housing or the labor market.

Very preliminary and Incomplete. Appendix not included

JEL Classifications: D44, D82, D83
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1 Introduction

The paper looks at dynamic model of adverse selection. An agent that we call the buyer samples

sequentially alternative trading partners, sellers, for a transaction that involves information asym-

metry. The buyer knows his own characteristics (type), while sellers receive signals about it. The

cost of the sellers depend on the buyer’s characteristics. Signals are imperfect and the buyer has

an incentive to search for a seller who received a favorable signal (indicating low cost). Sellers take

this behavior into account when interpreting their own information. The main objective of this

paper is to understand how the combination of search activity and information asymmetry affects

prices and welfare. We identify a particular form of the winner’s curse in the search environment

which is more severe than the winner’s curse in an auction, in a sense to be made precise. We show

that this implies that the conditions to achive information aggregation in a search environment are

more stringent than an auction.

Our main result concerns a situation in which search cost become small, i.e., we are looking

at a limit. When search costs are small, equilibrium price can be characterized completely by the

curvature of the tail of the signal distribution. We say that an equilibrium involves complete pooling

if good and bad buyers trade at the same prices. An equilibrium is perfectly revealing if buyers

get the same price they would get with perfect information. We show that, when search costs are

small, equilibrium is perfectly revealing if and only if there are arbitrarily informative signals1 and

the tail of the distribution of the signals is suffi ciently thick. If arbitrarily informative signals do

not exist or if the tail is not thick enough, the limit equilibrium involves complete pooling, i.e.,

prices paid by the buyer are independent of individual characteristics. In particular, despite the

fact that sellers receives potentially quite strong signals about the buyer’s type, in equilibrium no

information is transmitted, and the outcome is equivalent to the outcome in which there are no

signals at all. The reason for this negative result is excessive search of the bad types, diminishing

the value of information and excerbating the winner’s curse for the seller.

Whether or not information is perfectly revealed implies whether or not equilibrium is effi cient.

Except for signal distributions that are degenerate or have arbitrarily thin tails, equilibrium with

small search cost is effi cient if and only if the equilibrium is separating. We also discuss the relation

between welfare and information revelation in an extension, where the effi cient allocation depends

on the personal characteristics of the buyer.

We compare our result to a setting in which a buyer can commit to a procurement auction and

we look at the case in which the number of bidders become large. In a procurement auction the

limiting outcome never involves total pooling. Furthermore, if arbitrarily informative signals exist,

1Signals exist that are so informative that they are arbitrarily close to reveale the state.
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the limiting outcome will be perfectly informative as shown by Milgrom (1979) and Wilson (1977).2

In contrast, in a model with search, the outcome can involve complete pooling even with arbitrarily

informative signals. The main difference is that, with an auction, a buyer can commit to sample

only a fixed number of sellers and buy from the seller with the lowest bid. In a search model, the

buyer cannot commit to sample more sellers (or commit to truthfully report the number of sellers

sampled before.)

Beyond auction theory, the relation between the strength of signals and information revelation

by limit equilibria is analyzed in models of Herding and Voting. Duggan and Martinelli (2001)

find that the existence of arbitrarily informative signals are a necessary and suffi cient condition for

information aggregation in a model of voting in juries when the size of the jury increases. Smith and

Sorenson (2000) show that with social learning, herds on the correct action must occur if signals

are arbitrarily informative (and weak conditions that that often suffi ce.)

Our model is this: A buyer searches sequentially among sellers to obtain a service. The value

of the service to the buyer is commonly known. The buyer incurs a cost s > 0 ("search cost") to

sample a seller. A seller’s cost of providing the service, cw, is the same for all sellers and it depends

on an underlying state w ∈ {L,H} with cH > cL. The state w is known to the buyer but not to

the sellers. We shall call w also the type of the buyer.

At the beginning of every sampling round, the buyer draws one seller at a cost s. The seller

receives a signal that is correlated with the state. The signal is jointly observed by the buyer and

the seller. Then, the buyer and the seller bargain over the terms of trade, to be described below. If

they reach an agreement and trade, the game is over. If they do not trade and if the buyer chooses

to proceed, the next round starts according to the same rule and the buyer samples another seller

at cost s.

The bargaining process that takes place after a seller is sampled by the buyer is a critical part of

the model. Due to the information asymmetry, we cannot use the simple surplus sharing solutions

that are common in the search literature with symmetric information. A simple surplus sharing rule

is characterized by a number β ∈ [0, 1] such that the buyer receives a share β of the surplus. With

complete information, a surplus sharing rule is equivalent to a game in which, with probability β,

the buyer has all bargaining power and makes a take-it-or-leave-it price offer to the seller (and with

probability (1− β) the seller makes such an offer).

We extend this simple game to a setting with asymmetric information and interdependent

valuations. We assume that the buyer has all the bargaining power and offers a mechanism which
2Note that we are looking at a model in which individual characteristics matter; Pesendorfer and Swinkels (2000)

show that information aggregation is possible under weaker conditions for characteristics common to many buyers
(e.g., the common value of stocks).
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the seller can either accept or reject. If the mechanism is accepted, an allocation (trading probability

and price) is implemented, depending on the reported type of the buyer. Thus, we model bargaining

as a principal-agent problem, with the buyer being the informed principal as in Myerson (1983),

proposing a trading mechanism to the seller (agent). Since the principal has information that

affects the preferences of the agent, the mechanism proposal game is a signaling game. In general,

the game suffers from large multiplicity of equilibria due to the freedom of specifying beliefs off the

path. We therefore employ a number of refinements. Given these refinements, we characterize the

set of equilibrium mechanisms. The identified mechanisms are interim effi cient and the full surplus

of trade is extracted by the buyers.3 We show that the mechanism can be implemented as the

outcome of a price proposal game between the buyer and the seller. Modelling the interaction as

a mechanism proposal game has the advantage that we can concentrate ourself on pure strategy

equilibria (thanks to the inscrutability principle). In a price proposal game, the price offer and

acceptance strategies are generally mixed.

While the buyer can commit for the current period, he cannot commit not to trade in future

periods. The buyer can also not provide evidence about the number of sellers already sampled,

let alone provide evidence about their signals. (The buyer would have an incentive to commit

to sample only a finite number of sellers and/or the buyer would like to truthfully communicate

the number of sampled sellers, provided he has sampled only a few.) Equilibrium would be more

effi cient if the buyer could fully commit.

Our main result concerns the limit of the equilibrium outcomes when s becomes small. Let Fw
denote the distribution of the sellers beliefs in state w, conditional on their signal. We show that in

the limit of every equilibrium the two types of buyers will trade at a price equal to the true costs

cw if and only if the appropriately defined tail of Fw is thick enough.

More formally, we show that an appropriately transformed tail of the signal distribution can

be approximated by an exponential distribtion function. Concentrating on the tail of the signal

distribution for a low cost buyer, FL, the parameter λ ∈ [0, 1] of the approximating exponential

distribution directly determines the equilibrium price. If λ = 0, (if the tail is thick), the low cost

buyer will trade a price equal to cost cL; If λ ∈
(
0, 1

2

)
, the limit price will be between cL and ex

ante expected cost; the limit price is strictly increasing in λ. If λ ≥ 1
2 , the limit price is equal to

prior expected cost.

We analyze the relation between information aggregation and welfare. In our base model,

welfare is only affected by the accumulated search costs (buyers will purchase the good in every

3By allocating bargaining power randomly and allowing a seller to be the proposer of a mechanism with some
probability as well, we could capture situations with intermediate degrees of bargaining power as well.
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equilibrium and price are welfare irrelevant transfers). We show that accumulated search cost

become zero in the limit, if the limit is separating (because then almost no bad buyer searches).

However, accumulated search cost stay positive in all (partial) pooling equilibria, except when the

tail of the signal distribution is arbitrarily thin.

In an extension (not included in the current submission), we consider buyers with heterogeneous

willingness to pay. In the effi cient allocation, buyers with a low willingness to pay should receive

service if and only if their type is good (only then is the cost of the service smaller than the

valuation by the buyer). Whether or not the limit allocation is effi cient depends on whether sellers

can distinguish the types of the buyer. If the limit involves complete pooling (if signals are weak),

the outcome is effi cient.

Importantly, in this extension, smaller search cost can have a negative impact on welfare. With

smaller search cost, bad buyers engage in more search and separation is harder to achieve. This is

contrast with standart models of search in which smaller search cost increase welfare (directly) by

increasing the match quality and (indirectly) by reducing the negative impact local market power.

In another extension (not included in the current submission), we consider a more structured

search: a buyer first samples a small set of friends, before sampling strangers. Friends and strangers

make different inference about the type of the buyer upon encounter. It takes stronger signal for a

stranger to be willing to trade with a buyer than for a friend, i.e., strangers are more distrusting. We

compare this result to the situation of an entrepreneur of a start-up company looking for an early

investor. Convincing a friend (a member of an extended social network) to invest into a project

seems much easier than convincing a stranger who is not socially connected to the entrepreneur.

We analyse limit equilibria for tractability. When search costs are not small, we cannot rule

out multiplicity of equilibrium. For example, when good buyer sample more, sellers become more

optimistic, making search more valuable. We discuss this in a separate section. We also illustrate

the use of our refinements (for the principal agent game) in two lemmas following the main result.

We show that we can get separating equilibria even without arbitrarily informative signals; however,

such equilibria will involve (Pareto) dominated trading mechanisms. We also show that we can get

pooling equilibria even if signals have a thick tail; however, such equilibria are supported by beliefs

that fail devinity.

We discuss a numer of potential extensions. Most prominently, one can assume that the seller’s

signal is not observed by the buyer. As another extension, the buyer would learn his own type from

either the signals or the rejection decisions by sellers (if the buyer does not observe sellers’signals.)
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2 The Model

A buyer searches sequentially among sellers to obtain a service. To have a story in mind, one may

think of a procurement scenario in which the buyer is seeking to fix a problem (repair or cure) and

samples service providers sequentially to obtain bids4. The value of the service is commonly known

and denoted by u. The buyer incurs a cost s > 0 ("search cost") to sample a seller and engage in

bargaining. A seller’s cost of providing the service, cw, is the same for all sellers and it depends on

an underlying state w ∈ {L,H} with cH > cL. The prior probabilities of L and H are gL and gH
respectively. The state w is known to the buyer but not to the sellers. We shall call w also the type

of the buyer. The value of the service u is suffi ciently larger than cH + s (the cost of the service

and the cost of finding a seller) so that both types of the buyer would like to participate. We also

assume that s > cH − cL , otherwise search never pays.

At the beginning of every sampling round, the buyer draws one seller at a cost s. The seller

receives a signal x ∈ [a, b] ⊂ [0, 1] that is correlated with the state. The distribution of x given

w is Fw. We assume that Fw is atomless and Fw satisfies the montone likelihood ratio property

and a low signal is indicative of the low state. The buyer observes the signal of the seller. Then,

the buyer offers a direct mechanism M to the seller. The seller can either accept or reject the

mechanism. If the mechanism is accepted, the buyer reports his type and the mechanism implements

the prescribed allocation. If the mechanism is accepted and if trade happens, the game stops. If

either the mechanism is rejected or if the mechanism prescribes no trade, the buyer can choose to

stop the game.5 If the buyer chooses to proceed, the next round starts according to the same rule

and the buyer samples another seller at cost s.

If the buyer transacts at a price p after having sampled n sellers, his payoff is u− p− ns. The
payoff of the seller who agreed to the transaction is p − cw. The payoff of all other sellers is zero.
The realized surplus is u− cw − ns.

A collection of strategies - the mechanism offerM , acceptance decision A, and reporting decision

R - and beliefs β of the seller is called a constellation σ. A direct mechanism M is a vector

[pL, qL, pH , qH ], where pw, qw are the trading price and the trading probability conditional on a

4Alternatively, one may reverse the roles of what we call buyer and sellers to obtain an even more standard story
of sale of an object of uncertain quality w.

5A seller always accepts a price above cH . Since u > cH + s, this implies that it is always worthwhile to continue
and the buyer will never stop sampling. We therefore do not include a stopping decision in the formal analysis.
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report R = w.6 A typical mechanism will be

M =
[
cL, q

C , cH , 1
]
,

which implies the following: If the seller accepts M and if the buyer reports a type H , then

trade happens at a price equal to cH with probability one; if the buyer reports a type L, then

trade happens at a price equal to cL with probability qC ≤ 1. In general, M (x,w) describes the

mechanism offered by a buyer w if the seller has a signal x and a mechanism offer strategy is

M (·, ·) : {L,H}×X → R4
+.
7 Given a mechanism offerM , the seller believes that the probability of

the high state is β (M,x), so beliefs are β (·, ·) : X×R4
+ → [0, 1]. A (M,x) describes the acceptance

decision by a seller of type x, A (·, ·) : R4
+ ×X → [0, 1], where A is the acceptance probability. If

the mechanism is accepted, R (w, x,M) describes the report conditional on the state w, the signal

x, and the offered mechanism M , R : {L,H} ×X × R4
+ → {L,H}. We will define an equilibrium

as a constellation in which strategies are mutually optimal and beliefs are consistent. By the

inscrutability principle, there is no loss of generality in assuming that both buyers offer the same

mechanism, the mechanism is accepted, and reports are truthful. Let us define these requirement

precisely.

Given a constellation σ describing the behavior of the other players and their beliefs, expected

payoffs of the buyer who samples a seller with signal x and who uses strategy M,R is recursively

defined. The payoff is the probability of trading with the current seller times the expected profit

conditional on trading plus the expected continuation payoff if no trade happens minus the search

costs:

Uw (M,R, x, σ) = A (M (x) , x) q
M(x)
R(w,x,M(x))

(
u− pM(x)

R(w,x,M(x))

)
+
(

1−A (M (x) , x) q
M(x)
R(w,x,M(x))

)∫
x
Uw (M,R, x, σ)− s

where qMR is the trading probability in mechanismM given report R and similarly for pMR . Let Vw (σ)

be the expected payoff of the buyer who uses the strategies prescribed by σ. The payoff of a seller

with signal x who accepted an offer M is equal to the expected profit from the contract conditional

on the high cost and the low cost buyer, respectively, weighted by the relative probabilities

π (M,x, σ) = β (M,x) qMR(H,x,M)

(
pMR(H,x,M) − cH

)
+ (1− β (M,x)) qMR(L,x,M)

(
pMR(L,x,M) − cL

)
.

6The price is paid conditional on trading, i.e., the expected transfer given a mechanism M and a report R is
tR = qRpR. This is without loss of generality relative to specifying transfers if the trading probability is positive
whenever transfers are nonzero. This will the case in equilibrium.

7We disregard all measurability issues throughout the paper,e.g., we do not restrict the set of mechanisms by
requiring M (·) to be measureable.
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Let θ (σ) denote the ratio of the number of sellers who are sampled in expectation,

θ (σ) =
E [# of sellers sampled|w = L, σ]

E [# of sellers sampled|w = H,σ]
.

If the low cost buyer L samples many more sellers than the high cost buyer, a seller who is sampled

should update towards the low state. Let β0 (x, θ) denote the "interim" belief of a seller with signal

x who is sampled by a buyer (β0 does not condition on the price offer). The belief the seller depends

on the relative prior likelihood of the types gL
gH
, the relative likelihood of the the signals, dFL(x)

dFH(x) and

the relative likelihood of being sampled θ (σ). As shown in the appendix, the interim belief of the

seller can be defined as

β0 (x, θ) =
1

1 + gL
gH

dFL(x)
dFH(x)θ

.

(We implicitly assume an infinite number of sellers and the probability of being sampled follows an

improper (uniform) prior. We derive β0 as the limit of a Bayesian update with finitely many sellers

when the number of sellers becomes large.) Note that the belief of a sampled seller depends on the

equilibrium only through the ratio θ. In equilibrium, both buyers will offer the same mechanism and

thus, the beliefs of a seller following an on-equilibrium mechanism offer are just β (x,M) = β0 (x, θ).

Off-equilibrium beliefs are not restricted.

The acceptance decision by the seller is sequentially rational if he plans to accept mechanisms

that lead to strictly positive profits and if he plans to reject mechanisms that lead to negative

profits, given his beliefs β (M,x), i.e.,

A∗ (M,x) =

{
1 if π (M,x, σ∗) > 0

0 if π (M,x, σ∗) < 0
.

By the inscrutability principle (Myerson, 1983), we can restrict attention to equilibria in which

both types of the buyer offer the same, direct mechanism, the mechanism is accepted, and reports

are truthful. Every equilibrium outcome of a larger game in which the buyer can offer more complex

mechanism is equivalent to an outcome of an equilibrium in which both types of buyers offer the

same, direct mechanism that is incentive compatible and individually rational. We will therefore

drop the dependency of the offer strategy M (w, x) on w during the analysis.

Note that we define strategies to be history independent, i.e., the buyer can condition his

mechanism offer only on his own type and the signal of the seller and the reporting strategy may

depend in addition on the offered mechanism. The seller’s acceptance strategy depends only on the

signal and on the mechanism offer (since sellers do not observe anything else). Our basic equilibrium

definition is therefore essentially that of a Markov Perfect equilibrium:
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Definition 1 A constellation σ∗ is an inscrutable equilibrium if

1. M∗ (x,w) and R∗ are optimal, M∗, R∗ ∈ arg maxUw (M,R, x, σ).

2. β∗ is derived from Bayes Rule whenever applicable.

3. A∗ is sequentially rational.

4. M∗ is accepted and reporting is truthful, A∗ (M∗, x) = 1 and R∗ (w, x,M∗) = w.

5. The equilibrium is inscrutable, M∗ (x,H) = M∗ (x, L).

As indicate before, we impose refinements. We discuss the implications of these refinements in

the discuss section.

Beliefs following an off equilibrium mechanism offer M ′ satisfy "Divinity" if they put (weakly)

higher probability on a type of buyer who is strictly better off ifM ′ is accepted (rather than trading

at the equilibrium mechansim).8 With U∗w (x) denoting the equilibrium payoff, let Uw (M ′, x) be

the payoff to buyer w if the mechanism M ′ is accepted,

Uw
(
M ′, x

)
= qM

′
R

(
u− pM ′R

)
+
(

1− qM ′R

)
Vw − s,

given optimal reporting. Beliefs β (x,M ′) satisfy divinity given σ if

β
(
x,M ′

)
≥ β0 (x, θ) if UH

(
M ′, x

)
> U∗w (x)

β
(
x,M ′

)
≤ β0 (x, θ) if UL

(
M ′, x

)
> U∗L (x)

Divinity (rather than refinements like D1/D2) is used because it makes the construction of

equilibrium easier; for example, assigning the belief β0 (x, θ) off the equilibrium path would ensure

that an equilibrium satisfies Divinity. Note that β (x,M ′) = β0 (x, θ) whenever both buyers strictly

prefer M ′ to the equilibrium mechanism.

Divinity (as well as most of the other refinements) for signaling games relies on a single crossing

condition on preferences. The condition does hold in our setup if the expected payoff of the low cost

buyer is higher than the expected payoff of the high cost buyer. We restrict attention to equilibria

in which the payoffs VH (σ) and VL (σ) are ordered in this way. Thus, we rule out a class of pooling

equilibria in which both types of buyers trade at the same price.9

8This is NOT the original definition of Divinity and therefore put into quotation marks.
9 Intuitively, this restriction makes it harder to find pooling equilibria and thus strengthens the result that sepa-

ration is unlikely.
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Divinity in the current definition implies that equilibrium mechnisms must be undominated.

We state this as an extra requirement for transparency. A mechanism M is undominated if there

is no other mechansim M ′′ such that both types of the buyer seller strictly prefer M ′′ to M and

seller’s expected profits under M ′ are strictly higher than under M , given the interim belief β0.

(Of course, if both types of buyers strictly prefer a mechanism M ′′ to M , then divinity requires

that the belief of the seller is equal to β0. If seller’s profits are positive, sequential rationality

requires him to accept a mechanism. Therefore, divinity implies that equilibrium mechanisms must

be undominated.)

Here is the equilibrium definition which we will use most of the time. Whenever we use the

term equilibrium without qualification, we mean an undominated, monotone equiilibrium:

Definition 2 A constellation σ∗ is an undominated, montone equilibrium if σ∗ is an unscrutable

equilibrium and if

1. M∗ (x) is undominated given σ for all x.

2. β∗ (x,M) satisfies Divinity given σ for all x and M .

3. Payoffs are monotone, VL (σ∗) > VH (σ∗).

3 Existence and Preliminary Observations

In this section we discuss and show existence of an undominated, monotone equilibrium. We

also characterize the set of mechanisms M (x) that satisfy the equilibrium definition for given

continuation payoffs Vw (σ) and interim beliefs β0 (x, θ (σ)).

Given a ratio θ, the expected cost of a seller with signal x is

E0 [c|x, θ] = β0 (x, θ) cH + (1− β0 (x, θ)) cL.

A subscript zero refers to the evaluation of the expectation at the "interim belief," accounting for

the information contained in the signal x and being sampled, but not accounting for the information

contained in the mechanism offer.

We show that in any equilibrium, the mechanism that is offered in any given buyer-seller pair

must maximizes the payoff of the L buyer, subject to feasibility constraints (the mechanism should

be weakly profitable for the seller, reporting should be truthful, and the H buyer should not prefer

to reveal his type and trade at a price equal to high cost cH). Furthermore, every equilibrium is

equivalent (in terms of expected prices, number of expected searches and payoffs) to an equilibrium
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that is characterized by three numbers: x =
[
x∗, x∗∗, qCL

]
. With Ec = E0 [c|x, θ] denoting the

interim expected cost of a seller, the mechanism that is offered to a seller with signal x is given by

M (x) =


[1, Ec, 1, Ec] If x ≤ x∗[
qCL , cL, 1, cH

]
if x ∈ (x∗, x∗∗)

[ 0, cL, 0, cH ] if x ≥ x∗∗.
(1)

Thus, if the signal is low, x ∈ [0, x∗], both buyers trade at the same price equal to the interim

expected cost. If the signal is high, x ≥ x∗∗, the trading probability is zero. The trading probability
is positive if the signal is intermediate, x ∈ (x∗, x∗∗), but, of course, the trading probability at the

lower price cL cannot be one; otherwise, the mechanism would not be incentive compatible. Instead,

qCL will make the H buyer just indifferent between trading at cH with probability one and trading

at cL with probability qCL ,

qCL (VH , VL, θ) =

{
u−cH−VH
u−cL−VH if u− cH − VH > 0

0 if u− cH − VH ≤ 0

The trading probability at cL in the intermediate region (x∗, x∗∗) is positive only if u−cH−VH > 0;

otherwise, it is not possible to make the H buyer indifferent. The cutoffx∗ is always strictly positive

while x∗∗ can be one. The cutoff x∗ corresponds to a signal such that the L buyer is indifferent

between trading at a price equal to the expected cost of the seller and trading at the price cL with

probability qC :

x∗ (VH , VL, θ) : u− E0 [c|x∗, θ] = qCL (u− cL) +
(
1− qCL

)
VL,

The cutoff x∗∗ can be anything in [x∗, 1].

The next lemma states that every equilibrium is equivalent to one in which the mechanism is

as described before:

Lemma 1 Given any equilibrium σ∗ with payoffs VH (σ∗) and VL (σ∗), and ratio θ (σ∗). Then

there is an equilibrium σ∗∗ in which the offered mechanism is described by some x =
[
x∗, x∗∗, qCL

]
,

with x∗ = x∗ (VH , VL, θ), x∗∗ ≥ x∗, and qCL = qCL (VH , VL, θ) such that with Ec = E0 [c|x, θ]

M∗∗ (x) =


[1, Ec, 1, Ec] If x < x∗[
qCL , cL, 1, cH

]
if x ∈ (x∗, x∗∗)

[ 0, cL, 0, cH ] if x > x∗∗.

And σ∗∗ leads to the same payoffs and ratio as σ∗.

We also show that equilibrium exists:
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Theorem 1 Equilibrium exists.

4 Price Setting Alternative

Suppose that, instead of offering a mechanism, the buyer offers a price which is either accepted

or rejected. A pricing strategy is a cumulative distribution Pw (·, x) on [cL, u] and an acceptance

strategy is a probability of accepting any price, α (p, x). Let β (p, x) denote the posterior following

a price offer p. A constellation is a collection [Pw, A, β] and denoted by σP . Given σP , we can

again define the ratio of the expected number of searches, θ
(
σP
)
and expected payoffs Vw

(
σP
)
.

Let β
(
x, θ

(
σP
))
be the interim belief of a seller who is sampled with signal x. In an equilibrium

constellation, prices and acceptance strategies must be mutually optimal, a price is accepted if

p ≥ β (p, x) cH + (1− β (p, x)) cL,

and beliefs are consistent.

We now define a canonical equilibrium. Recall that in a typical model of search, bargaining is

specified by assuming that one side receives all the rents from a match or that the rents are shared

between the buyer and the seller according to some parameter. We cannot extend this immediately

to our model, because there are two types of buyer who have conflicting interests. A constellation

is called a canonical equilibrium if, within each match, the rent is fully extracted by the L buyer,

subject to incentive compatibility and individual rationality constraints.

A constellation σP is a canonical equilibrium if, given continuation payoffs Vw
(
σP
)
and interim

beliefs β (x, θ (σ)), the equilibrium of the pricing game within each pair is the best equilibrium for

the L buyer as follows: An equilibrium of the pricing game consists of distributions Pw, acceptance

decision A (p), and beliefs β (p) such that

p ∈ suppPw (x) if: A (p) (u− p− Vw) = max
p
A (p) (u− p− Vw)

A (p) = 1 if β (p) cH + (1− β (p)) cL < p

A (p) = 0 if β (p) cH + (1− β (p)) cL > p

β (p) =
β (x, θ) dFH

β (x, θ) dFH + (1− β (x, θ)) dFL

An equilibrium P ∗w, A
∗, β∗ is the best equilibrium for the L buyer if there is no other equilibrium

P ′w, A
′, β′ such that for any p∗ ∈ suppP ∗L (x) and p′ ∈ suppP ′L (x) the L buyer would be strictly

12



better off with P ′w, A
′, β′,

A′
(
p′
)

(u− p′ − VL) > A∗ (p∗) (u− p∗ − VL) .

A constellation σP is a canonical equilibrium if for all x, Pw (·, x), A (·, x), β (x, θ) is the best

equilibrium for the L buyer as defined above.

5 Main Result

The question is to what extent is information revealed in equilibrium when s is small. The extent of

revelation is captured here by the price paid by the L buyer when s is small. If the price that the L

buyer pays is close to cL and (therefore) the price that the H buyer pays is close to cH , revelation is

maximal. Recall that the literature on auctions considered a related question. It inquired to what

extent the equilibrium price in a common values auction reflects the correct information when

the number of bidders is made arbitrarily large (Wilson(1977) and Milgrom(1979)). Milgrom’s

result translated to an auction version of our model is that the price approaches the true value iff

limx→a
fL(x)
fH(x) =∞. That is, when there are signals that are exceedingly more likely when the true

state is L than when it is H. In our model the number of bidders is endogenous. The counterpart

of increasing the number of bidders in our model is reduction of the sampling cost s. The following

proposition claims that in our model revelation requires even stronger requirements on the quality

of the signals.

The buyers care only about the distribution of posteriors, not about the distribution of sig-

nals per se. Without loss of generality, signals are therefore normalized such that the posterior

probability of the high state is equal to x, i.e., for all x,

x =
1
2fH (x)

1
2fH (x) + 1

2fL (x)
.

Rewriting shows that this requires fH
fL

= x
1−x . Therefore, the distribution FL (·) determines FH (·)

and we can concentrate on characterizing FL (·), the distribution of signals from the viewpoint of

the L−Buyer. In addition, sellers’posteriors can be expressed very as a function of the signal and
the relative number of searches as shown below.

Signals x > 0 are not revealing. If there are no revealing signals for the low state, the limit

with s→ 0 involves complete pooling. Let EL [p|σk] be the expected price paid by the L buyer in

13



expectation in an equilibrium σk, given sk. We say that the limit of a sequence of equilibria σ∗k
involves complete pooling if EL [p|σ∗k]→ gHcH + gLcL.

Theorem 2 Suppose the suppport of FL is [a, b] ⊂ [0, 1]. If a > 0, then the limit involves complete

pooling at the ex ante expected price, i.e.,EL [p|σ∗k]→ gHcH + gLcL.

Proof : Take a sequence of constellations σk for sk → 0. Let Vkw = Vw (σk) and ∆k =

u − cH − VkH . In general, a subscript k denotes parameters of the constellation σk (like xk, θk,
etc.). We distinguish three cases according to whether or not ∆k is positive, zero, or negative when

k is large (if the sign of ∆k does not converge, the analyis is for an arbitrary convergent subsequence

which is suffi cient for the conclusion). We will only consider the first case, ∆k < 0, here. The other

cases are appendicized. For k large enough, in equilibrium ∆k < 0.

Case 1: ∆k < 0 for all k large enough. Then x∗∗k = x∗k and both buyers search for a seller with

a signal x ≤ x∗k. The ratio of the number of searches is

θk =
FH (x∗k)

FL
(
x∗k
) .

The cutoff x∗k is determined by indifference of the L buyer between trading at the expected cost of

a seller with this signal and continuing search

x∗k : E0 [c|x∗k, θk]−
∫ x∗k

a
E0 [c|x, θk]

dFL (x)

FL
(
x∗k
) =

sk

FL
(
x∗k
) .

The cutoff x∗k must converge to the lower bound of the support, a. Otherwise, search cost on the

right hand side converge to zero, while the expected saving from search on the left hand side would

be positive: Since x∗k is bounded away from a, the ratio θk is bounded away from the extremes, 0

and ∞. Hence, sellers with different signals will offer different price.

Let x∗k → a. Then the ratio becomes equal to the inverse likelihood ratio,

lim θk = lim
FH (x∗k)

FL
(
x∗k
)

= lim
fH (x∗k)

fL
(
x∗k
) =

a

1− a .
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The expected price at which the L buyer is trading is

limEL [p|σ∗k] = cL + lim

∫ x∗k

a

1

1 + 1−x
x

gL
gH
θk

(cH − cL)
dFL (x)

FL
(
x∗k
)

= cL +
1

1 + 1−a
a

gL
gH

a
1−a

(cH − cL) = gLcL + gHcH = E0c.

Hence, if ∆k < 0 for all k, the limit involves complete pooling. QED

The intuition is this: When search cost are small, both buyers search for sellers with the most

favorable signals close to the lower bound a. The resulting ratio of the number of searches is

lim θk =
a

1− a .

Of course, this is just the inverse likelihood ratio of the signals

lim
fL (x∗k)

fH
(
x∗k
) =

1− a
a
.

Intuitively, if a high cost buyer is less likely to generate a signal close to the lower bound a, high

cost buyers are searching even more. Hence, the informational content of the signals at the lower

bound is just balanced by the informational content of being sampled.

We ask now whether the limit will be separating with a continuous signal distribution if its

support includes zero, ie., if signals can be arbitrarily close to zero and therefore, signals can be

arbitrarily informative. As noted before, in auctions it has been shown that the existence of such

signals is suffi cient for revelation of the state in the limit. As we will now see, this is not the case

with search. The limit does not need to involve information revelation. Indeed, we will see that

even with arbitrarily informative signals the limit can involve complete pooling. Thus, in a search

model, the outcome can be very uninformative even in the presence of almost perfect information.

The intuition is this: If the limit is separating, the L buyer trades at cL while the H buyer trades

at cH . It can be shown that the accumulated search cost of the L buyer must become zero. Hence,

the L buyer must be able to find prices close to cL at almost no cost. However, the search cost for

the H buyer must be strictly positive. As we have seen before, this is not possible if the support of

the signal distribution is bounded away from zero. Our main result shows that something similar

happens when the support of the signal distribution is too thin near zero.

We will first look at equilibria in which the surplus of the H buyer is non-positive, ∆k ≤ 0. In

such equilibria, the cutoff x∗k must converge to zero. This is intuitive: The L buyer can otherwise

search for signals x close to zero, ensuring trade at a price close to cL at almost no cost.
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The incentive of the L buyer will depend strongly on the shape of the conditional distribution
dFL(x)

FL(x∗k)
on the left tail (0, x∗k). If this conditional distribution has a "thick" tail and puts a high

mass on signals strictly below x∗k, search will be more valuable (because the average seller will offer

a strictly better deal) than in the case of a "thin" tail, when the conditional distribtion puts high

mass on signals very close to x∗k itself (because the average seller x ≤ x∗k will offer almost the same
deal as x∗k). We therefore introduce a way of characterising the limiting tail distribution.

Given a constellation σk, the cutoff x∗k is determined by indifference of the L buyer

E0 [c|x∗k, θk]− E0 [c|x ≤ x∗k, θk, L] =
sk

FL
(
x∗k
) .

The assumption ∆k ≤ 0 implies that the H buyer has a weak incentive to not trade at cH but

rather incure search cost and find some x ≤ x∗k,

cH − E0 [c|x ≤ x∗k, θk, H]− sk

FH
(
x∗k
) ≥ 0.

We are interested under which conditions the above inequality holds in the limit.

We can use the indifference condition of the L buyer to substitute sk out of the expression.

Furthermore, to do the substitution, we utilize two algebraic manipulations. First, let Ck be the

likelihood ratio
fL(x∗k)
fH(x∗k)

θk at the cutoff seller,

E0 [c|x∗k, θk] =
1

1 + dFL(x∗)
dFH(x∗)θ

=
1

1 + Ck
.

The price at the cutoff seller converges to prior expected cost if Ck → 1. The price converges to

cL = 0 if Ck →∞. If Ck → C̄ ∈ (1,∞), the limit price at the cutoff seller is in between. Second, we

will do a change of variables. For each x∗k, we map the interval (0, x∗k] into [0,∞) via the continuous

transformation

t (x, x∗k) =
x∗k − x
xx∗k

which defined as the solution to x =
x∗k

1+x∗kt(x,x
∗
k)
. So, t (x∗, x∗) = 0 and limx→0 t (x, x∗) = ∞. We

restrict attention to a class of exponential functions with parameter λ, FL (x) = e−λ
1
x

+λ. This class

has the property that the induced distribtution of the variable t is independent of the cutoff x∗k,

F
x∗k
L (t) = 1− e

−λ
(

x∗
1+x∗t

)−1
+λ

e−λ
1
x∗+λ

= 1− e−λt .
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Now, we substitute out and pass the limit into the integral:

lim cH − E0 [c|x ≤ x∗k, θk, H]− sk

FH
(
x∗k
) ≥ 0

⇔ lim

∫ x∗k

0

(1− 1

1 + (1−x)
x θk

)
x

1− x −
1

1 +
(1−x∗k)
x∗k

θk

+
1

1 + (1−x)
x θk

 dFL (x)

FH
(
x∗k
) ≥ 0

⇔ lim
x∗FL (x∗k)

FH
(
x∗k
) ∫ ∞

0

(
Ck

1− x∗k + (1 + x∗ (t− 1))Ck
− tCk

(1 + Ck)
(
1− x∗k + (1 + x∗ (t− 1))Ck

))λe−λtdt ≥ 0

⇔ 1(
1 + C̄

)2 ∫ ∞
0

(
1 + C̄ − t

)
λe−λtdt ≥ 0

⇔ 1(
1 + C̄

)2 (1 + C̄ − 1

λ

)
≥ 0

The H buyer has an incentive to search if and only if the above inequality holds. We can use

this to characterize equilibria with ∆k ≤ 0. (To characterize equilibria ∆k > 0, we need to take

care of qCk which makes the limit expressions more complicated.) Under which conditions ∆k < 0

for all k large enough? If ∆k < 0, the equilibrium must involve complete pooling in the limit: both

buyers search and the expected price must be equal to the prior expected price (the search cost of

the L buyer converge to zero; hence, the expected price conditional on x ≤ x∗k must be equal to

the price at the cutoff type for indifference.) Hence Ck → C̄ = 1. Inspecting the limit expression

shows that this is the case only if

1 + 1− 1

λ
≥ 0⇔ λ ≥ 1

2
.

Hence, we will get an equilibria with ∆k < 0 for all k only if λ ≥ 1
2 .

Now, under which conditions ∆k = 0 for all k large enough? ∆k = 0 requires that

1 + C̄ − 1

λ
= 0.

Hence, ∆k = 0 for k large only if the limit price is p̄ = 1
1+C̄

= λ. And hence, ∆k = 0 only if λ ≤ 1
2

(otherwise, p̄ > 1
2 , which contradicts seller’s zero profits.)

(In the appendix we show that ∆k > 0 for all k can be true only if λ = 0. Of course, ∆k > 0

implies that the H buyer does not search while the L buyer searches for a seller with a signal close

to zero. Hence, the limit is revealing, Ck → ∞ if ∆k = 0. Conversely, λ = 0 implies that the

distribution FL has all mass at x = 0, hence the limit is trivially revealing.)
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The above observations imply a complete characterization of equilibrium. If λ > 1
2 , then it

must be that ∆k < 0 for k large enough and hence, the limit price must be p̄ = 1
2 . This follows

because it cannot be that ∆k < 0 for k large enough (this requires λ = 0) and it cannot be that

∆k = 0 (this would imply p̄ > 1
2 , a contradiction). If λ ∈

(
0, 1

2

)
, the only possibility is ∆k = 0

and if λ = 0, the only possibility is p̄ = 0. We have chosen an arbitrary converging subsequence of

prices pk (a converging subsequence of Ck). But, since the limit price is independent of the choice

of the subsequence, the sequence itself must converge to the same limit.

We can characterize equilibrium prices by λ. Let EL [p|σk] be the expected price paid by the L
buyer in expectation in an equilibrium σk. We call the limit of a sequence of equilibria σ∗k revealing

if EL [p|σ∗k] → cL. Recall, cL = 0 and cH = 1, and prob {w = H} = prob {w = L} = 1
2 . The

theorem is proven as a corollary of the more general Theorem 4.

Theorem 3 Fix some distribution FL (x) = e−λ
1
x

+λ and some sequence {sk}, sk → 0. Let σ∗k be a

sequence of equilibria given sk. Then the limit price paid by the L buyer is

limEL [p|σ∗k] =


0 if λ = 0

λ if λ ∈
(
0, 1

2

)
1
2 if λ ≥ 1

2 .

Thus, revelation in the search model with small s requires that there are signals that separate

L from H even in a more pronounced way than in the large auction model. When both models

the signals that make L exceedingly more likely are needed to counteract the winner’s curse. This

difference between the strengths of the requirement in the two models owes to the somewhat different

form of the winner’s curse in these models. As explained before, in the search model the winner’s

curse is produced both by the larger expected number of sellers who participate in the bidding (like

in the auction) and by the worsened distribution that a sampled seller is facing due to the longer

search duration of the H type.10

We can generalize the theorem to a larger set of distribution function. What we need for our

proof technique is to ensure that we can pass the limit into the integral in the inequality. For this,

we need that the stretched tail F x
∗

L converges to a fixed distribution when x∗k vanishes to zero. Any

sequence x∗k → 0, defines a sequence of distributions F
x∗k
L (t) of t on [0,∞). The original tail FL(x)

FL(x∗k)

on [0, x∗k] is called regular if the sequence of corresponding distributions F
x∗k
L (t) on [0,∞] converges

to a limit F ∗L. (The limit F
∗
L does not need to be a cumulative distribution function itself.) The

set of distributions FL which are regular is Φ,

10 [Conclusion, Appendix and Literature to be added.]
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Φ =

 FL (·) : ∃ F ∗ (t) ≡ 1− limx∗→0

FL

(
x∗

1+x∗t

)
FL(x∗) ∈ [0, 1] , ∀t

and F ∗ (t) ≤ 1−
FL

(
x∗

1+x∗t

)
FL(x∗) , ∀t ∈ (0,∞), ∀x∗.


Note that by Helley’s selection theorem, all distribution functions have a pointwise convergent

subsequence, so a limit as in line one exists for all distributions. The second line of the definition is

a technical condition which is needed for the proof. It ensures that the integral of a linear function

converges. A generic example of functions FL ∈ Φ is FL (x) = e−k
1
x

+k, since λ (FL) = k and

F
x∗k
L (t) = 1− e

−k
(

x∗
1+x∗t

)−1
+k

e−k
1
x∗+k

= 1− e−kt ∀x∗k.

Every tail F ∗ (t) for F ∈ Φ is exponential: (The appendix contains the proof.)

Lemma 2 If F ∈ Φ, then the limit tail F ∗ (·) is exponential, i.e., for some λ ∈ [0,∞],

F ∗ (t) = 1− e−λt.

The lemma is immediate if the limit F ∗ (t) is constant at 0 or constant at 1. In these cases,

λ = 0 and λ =∞, respectively. Many distributions will have such a degenerate limit. If F ∗ is not
constant, then it must have a stationarity property, since it must be independent of the cutoff x∗.

This property requires that F ∗ is exponential. Therefore, we can define a mapping

λ : Φ→ [0,∞] ,

which assigns a hazard rate λ (FL) to each distribution FL ∈ Φ.

Theorem 4 (Main Result.) Fix some distribution FL ∈ Φ and some sequence {sk}, sk → 0.

Let σ∗k be a sequence of equilibria given sk. Then the limit price paid by the L buyer is

limEL [p|σ∗k] =


0 if λ (FL) = 0

λ if λ (FL) ∈
(
0, 1

2

)
1
2 if λ (FL) ≥ 1

2 .

Distributions which have a positive density at zero are shown to be such that λ (FL) = 0.

Likewise, distributions for which the density is not falling quickly are such that λ (FL) = 0:
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Lemma 3 Let FL (·) be continuously differentiable. If fL (0) > 0, then λ (FL) = 0. More generally,

λ (FL) = 0 if

lim
x→0

fL (αx)

fL (x)
> 0 for any α ∈ (0, 1) .

Example: Suppose, signals are generated by two normal distributions, depending on the state:

fL (s) =
1√
2π
e−

1
2
s2

fH (s) =
1√
2π
e−

1
2

(s−1)2

Then, I normalize signals so that they are equal to the posterior, denoted x ∈ [0, 1], x (s) =
fL(s)

fH(s)+fL(s) . The resulting density of posteriors in the low state is given by

fL (β) =
√

2e

exp

(
−1

2

(
ln
(
− 1
β (β − 1)

)
− 1
)2
)

4
√
πβ4 − 8

√
πβ3 + 4

√
πβ2

(
e−1 − 2βe−1 + β2 + β2e−1

)2
,

with graph

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

1

2

3

4

x

y

Numerical calculation suggests that limx→0
fL(αx)
fL(x) = 0 for all α but still λ (FL) = 0. The

example shows that even if the original tail fL(x)

FL(x∗k)
vanishes to zero for almost all x < x∗k, the

stretched tails is, in fact, quite thick.

Furthermore:

Theorem 5 The limit is effi cient, gHVH + gLVL = gH (u− cH) + gL (u− cL), if and only if either

λ (FL) = 0 or λ (FL) =∞.

20



Thus, the limit is only effi cient if either the limit is separating or signals are extremely weak.

(An earlier example of an effi cient limit with weak signals was the case with a > 0.)

5.1 Duration on the Market

Is it the good or the bad buyer who samples more sellers, i.e., who stays in the market for a longer

duration? In general, the relation between the type of the buyer and the duration is ambiguous.

In the special case with boundedly informative signals and small search costs, however, there is a

clear prediction: the bad type will sample longer. An implication of this is that, conditional on

observing a transaction between the buyer and the n’th seller, the probability of the buyer being

bad is increasing in n. Therefore, the expected price paid by the buyer is increasing in n.

The observation that bad types sample longer and receive a lower price in expectation is in

accord with empirical observations about adverse selection in markets, see for example the discus-

sionin Gonzales and Shi (2008). XX

In our model, duration on the market is unobservable to the seller. For example, in procurement,

sellers do not know how many other sellers have been called already. However, many markets are

"thin" and trading opportunities arrive slowly over time. In such a market, duration can be

observed (e.g., in the labor market, the time since the last employement is observabel and in the

housing market the time on the realtor’s listing service is reported.) Furthermore, there can be

crude measures of duration. In a procurement situation, a buyer might have a group of preferred

sellers who he contacts. Or an entrepreneur has a network of potential investors. Thus, social

distance from the seller might serve as a measure of time on the market.

Let us assume that there are two types of sellers, "friends" and "strangers". The buyer samples

friends first and turns to strangers only after not trade has taken place. To keep it simple, we

assume that the number of friends is random. This will make the problem stationary. The first

seller is a friend with probability γ. Furthermore, if the last seller sampled was a friend, the next

seller will be a friend with probability γ and a stranger with probability (1− γ). If the last seller

was a stranger, the next seller will be a stranger for sure. Sellers know their relationship to the

buyer. They can infer from their relationship something about how many other sellers have been

sampled already but they do not observe their order.

The mechanism offer now conditions on the seller’s signal x and the nature of the relationship,

r ∈ {fr, st}. Likewise, sellers’ beliefs condition on x and r. Since the problem is stationary

by construction, the buyer’s continuation payoff (and hence the optimal offer) does not depend on

time. Let σ denote a market constellation, defined in the natural manner (withM (w, x, r) denoting
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the mechanism offer by type w to a seller with signal x and relation r, and so on for the other

components). Let Vw (σ, fr) be the payoff of a buyer who has last sampled a friend (or who has

just entered).

A seller’s belief who is a friend of the buyer depends on the ratio of the expected number of

friends sampled (and likewise for a stranger’s belief)

θ (σ, fr) =
E [# fr|L, σk]
E [# fr|H,σk]

θ (σ, st) =
E [# st|L, σk]
E [# st|H,σk]

.

We do not repeat the definition of equilibrium. When signals are boundedly informative and

search cost are suffi ciently small, the following characterizes the equilibrium. There are two cutoffs

x∗fr and x
∗
st, such that the buyers trade with a seller who is a friend if and only if x ≤ x∗fr (the

buyers trade with a seller who is a stranger if and only if x ≤ x∗st.) The price is equal to interim

expected cost. The ratios can be calculated to be11

θ (σ, fr) =
FL

(
x∗fr

)(
FH

(
x∗fr

)
γ + 1− γ

)2

FH

(
x∗fr

)(
FL

(
x∗fr

)
γ + 1− γ

)2 θ (σ, st) =

(
1− γFL(x∗fr)

1−(1−FL(x∗fr))γ

)
FH (x∗st)(

1− γFH(x∗fr)
1−(1−FH(x∗fr))γ

)
FL (x∗st)

we have β (x, r, θr) =
(

1 + θr
x

1−x

)−1
and E [c|x, r, θ] = βcH + (1− β) cL. We get

UL (σ∗, r) = FL (x∗r) (u− E [c|x ≤ x∗r , r, θ]) + (1− FL (x∗r))VL (σ∗, r)

VL (σ∗, fr) = γUL (σ∗, fr) + (1− γ)UL (σ∗, st)− s and VL (σ∗, st) = UL (σ∗, st)− s.

The cutoff types are determined by indifference

x∗r : u− E [c|x∗r , r, θ] = VL (σ∗, r) .

The bad buyer samples more strangers and hence, the interim beliefs of strangers are more

pessimistic than the interim beliefs of the friends

β (x, stranger, θr) > β (x, friend, θr) .

11From
∑∞
i=1 i

(
γF ((1− F ) γ)i−1

)
= γF

(Fγ+1−γ)2
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This follows from(
1− γFL(x∗fr)

1−(1−FL(x∗fr))γ

)
FH (x∗st)(

1− γFH(x∗fr)
1−(1−FH(x∗fr))γ

)
FL (x∗st)

<

1−(1−FL(x∗fr))γ−γFL(x∗fr)
1−(1−FL(x∗fr))γ

1−(1−FH(x∗fr))γ−γFH(x∗fr)
1−(1−FH(x∗fr))γ

=
1− γ + FL

(
x∗fr

)
γ − γFL

(
x∗fr

)
1− γ + FH

(
x∗fr

)
γ − γFH

(
x∗fr

) 1−
(

1− FH
(
x∗fr

))
γ

1−
(

1− FL
(
x∗fr

))
γ

=
1−

(
1− FH

(
x∗fr

))
γ

1−
(

1− FL
(
x∗fr

))
γ

and hence

θ (σ, fr) =
FL

(
x∗fr

)(
FH

(
x∗fr

)
γ + 1− γ

)2

FH

(
x∗fr

)(
FL

(
x∗fr

)
γ + 1− γ

)2 =
FL

(
x∗fr

)
FH

(
x∗fr

) FH
(
x∗fr

)
γ + 1− γ

FL

(
x∗fr

)
γ + 1− γ

1−
(

1− FH
(
x∗fr

))
γ

1−
(

1− FL
(
x∗fr

))
γ

>
1−

(
1− FH

(
x∗fr

))
γ

1−
(

1− FL
(
x∗fr

))
γ
> θ (σ, st) .

This implies that a stranger’s interim expected cost is higher than a friend’s interim expected

cost, conditional on seeing the same signal. Hence, buyer like friends and having sampled a friend

as the last seller is good news, i.e.,

VL (σ∗, fr) > VL (σ∗, st) .

In the case of boundedly informative signals and low search cost we conclude that: A buyer

gets a better deal if trading with a friend since friends are more trusting (more optimistic) than

strangers. Bad types are dealing more often with strangers than good types.

6 Extension: Heterogeneous Buyers

Suppose buyers are heterogeneous with a willingness to pay of uS or uB, uB > uS . We assume that

uB−cH > s, so that the high valuation buyer wants to participate and we assume that uS−cL > s.

However, trade is not effi cient for the low valuation, high cost buyer, uS − cH < 0. In particular,

we assume that the low valuation type is not willing to pay the prior expected cost of the seller,

uS − (gLcL + gHcH) < 0. If the equilibrium outcome is complete pooling, this type is better off

not participating. Therefore we introduce a prior decision stage: before sampling sellers, upon
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observing his own type, a buyer can decide to either start sampling sellers or to opt out. This

decision is non-reversable, i.e., once the buyer decided to sample sellers, he cannot opt out again;

once the buyer opted out, he cannot re-enter.

The type of a buyer is now denoted by (w, i) ∈ {(L, S) , (L,B) , (H,S) , (H,B)}. We assume
that the willingness to pay and the cost are independent. Let gB and gS denote the probabilities

of uB and uS , respectively. Then the probability of the type (w, i) is just gwgi, e.g., the probability

of (H,S) = gHgS .

While we will introduce heavy machinerie (we will define equilibrium and introduce notation

parallel to the case with homogeneous buyers), the main idea is quite simple: For given search

cost, the trading outcome will be almost identical to the full information outcome when signals

are suffi ciently informative. With full information, the high cost-low valuation type (H,S) does

not enter, while the other types trade at prices equal to the costs of serving them. This outcome

is effi cient. However, for the same signal distribution as before, when search cost become small,

equilibrium will involve complete pooling. Therefore, the expected trading price will be E0c =

gHcH +gLcL and, hence, the low cost-low valuation buyer can no longer trade, so that the outcome

becomes ineffi cient. We construct this example to show that, with adverse selection, lower search

cost can decrease welfare. The reason is simple: search cost inhibit excessive search so that signals

have value and allow different cost types to be separated.

Heterogeneous valuations are easily dealt with because, conditional on entry, the optimal offer

of a buyer does not depend on his willingness to pay. Instead, the buyer only trades off the price

he has to pay today vs the price he would have to pay in the future plus the expected search cost.

The willingness to pay does not enter this trade off. (This would be different, of course, if we would

model search cost by discounting.)

Let e ∈ {0, 1} denote the entry decision (with 0 denoting "no entry"). We now define equilibrium

with heterogeneous buyers. As mentioned before, this is simplified by the fact that conditional on

entry, the preferences of the buyer will not depend on his willingness to pay. Therefore, we can

restrict attention to equilibria in which the strategy of the buyer, conditional on entry, depends only

on his cost type w. In particular, buyers report only their cost type to the direct mechanism. A

constellation σ is extended to include the entry decision, e ((w, i)) ∈ {enter, not enter}. Conditional
on entry, equilibrium payoffs are Uw,i (M,R, x, σ), where

Uw,i (M,R, x, σ) = ui − E [p|w, σ]− sE [#|w, σ] .
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Definition 3 A constellation σ∗ is an inscrutable equilibrium if

1. e∗ ((w, i)),M∗ (x,w) and R∗ are optimal, M∗, R∗ ∈ arg maxUw,i (M,R, x, σ). Entry e (w, i) =

”not enter" if Uw,i < 0 and e (w, i) ="enter" if Uw,i > 0

2. β∗ is derived from Bayes Rule whenever applicable.

3. A∗ is sequentially rational.

4. The equilibrium is inscrutable: M∗ (x,H) = M∗ (x, L), M∗ is accepted and reporting is

truthful, A∗ (M∗, x) = 1 and R∗ (w, x,M∗) = w.

5. β∗ (x,M) satisfies Divinity given σ for all x and M and Payoffs are monotone, VLi (σ∗) >

VHi (σ∗).

Beliefs now take into account the entry decision. Note that, by uB − cH > s, e (w,B) = 1 for

w ∈ {L,H}:

β (x, θ, e) =
gH (gB + gSe (H,S))

gH (gB + gSe (H,S)) + θ fL(x)
fH(x)gL (gB + gSe (H,S))

.

Let E0 [c|x, θ, e] be the interim expected cost of a sampled seller.

Then equilibrium mechanisms are characterized by

Lemma 4 Given any equilibrium σ∗ with payoffs VHi (σ∗) and VLi (σ∗), and ratio θ (σ∗). Then

there is an equilibrium σ∗∗ in which the offered mechanism is described by some x =
[
x∗, x∗∗, qCL

]
,

with x∗ = x∗ (VH , VL, θ), x∗∗ ≥ x∗, and qCL = qCL (VH , VL, θ) such that with Ec = E0 [c|x, θ, e]

M∗∗ (x) =


[1, Ec, 1, Ec] If x < x∗[
qCL , cL, 1, cH

]
if x ∈ (x∗, x∗∗)

[ 0, cL, 0, cH ] if x > x∗∗.

And σ∗∗ leads to the same payoffs and ratio as σ∗.

We concentrate on the case with boundedly informative signals, because in this case equilibrium

predictions are unique. We discuss the case with unboundedly informative signals later. Clearly,

with suffi ciently informative signals, equilibrium will be almost identical to the full information

outcome:

Lemma 5 Given any s, there is some distribution F sL with support [a, b], 0 < a < b < 1, such that

in every equilibrium entry is effi cient, e (H,S) = 0, and search cost are small, sE [#|w, σ] ≤ 2s.

Prices are almost revealing, E [p|L, σ] ≤ cL + 2s and E [p|L, σ] ≥ cH − 2s
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This implies that for small search cost, payoffs are almost first best effi cient. When the signals

are informative as defined in the last lemma (signals are distributed according to F sL), trading

surplus is ∑
(w,i)

gwgi (e (w, i) (ui − cw − sE [#|w, σ]))

≥ gSgL [uS − cL] + gB [uB − gHcH − gLcL]− 4s.

The lemon’s outcome refers to the case where buyers either trade at the first seller at prior expected

cost or do not enter at all. This outcome corresponds to a situation in which sellers receive no

information except for the price offer, similar to the original lemon’s model. Then surplus in the

lemon’s outcome is

gB [uB − gHcH − gLcL − s]

When search cost are small, the fact that signals are boundedly informative implies that prices

will not depend on the cost of serving the buyer and equal prior expected cost, E0c = gHcH +gLcL.

This is an immediate implication of Theorem 2. If the price does not depend on the willingness

to pay, then buyer with a low valuation will be priced out of the market. Hence, the outcome is

ineffi cient:

Let {sk} be a sequence of decreasing, vanishing search cost, sk → 0. Let signals be distributed

according to F s1L such that, given the highest search cost s1, the outcome is almost effi cient:

Lemma 6 Given F s1L with support [a, b], a > 0. When sk → 0, prices are equal to prior expected

cost, E [p|w, σk] → gLcL + gHcH and the surplus of the equilibrium outcomes σk converges to the

ineffi cient lemon’s outcome,∑
(w,i)

gwgi (ek (w, i) (ui − cw − skE [#|w, σk]))→ gB [uB − gHcH − gLcL] .

7 Conclusion
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8 Appendix

8.1 Proof of Lemma 1

We will proof the lemma by a sequence of auxilliary lemmas.

We say a mechanismM is feasible relative to continuation payoffs Vw and beliefs β0 if the mech-

anism is individually rational for the buyer (better than no trade), truthful reporting is incentive

compatible, and if it is individually rational for the seller to accept the mechanism, given truthful

reports. Suppose a buyer w has sampled a seller with signal x and suppose the continuation payoff

of the buyer is Vw. Then reporting truthfully is optimal if

qMw
(
u− pMw

)
+
(
1− qMw

)
Vw ≥ qMw′

(
u− pMw′

)
+
(
1− qMw′

)
Vw, ∀w′ ∈ {L,H} .

Acceptance of a mechanism is profitable if expected profits are positive

β0q
M
H

(
pMH − cH

)
+ (1− β0) qML

(
pML − cL

)
≥ 0.

Given continuation payoffs VH (σ) , VL (σ) and beliefs β0 (x, θ (σ)), let M̂ (x, (VH , VL, θ)) be the

set of feasible mechanisms that maximize the expected payoff of the low cost buyer, subject to the

constraint that the high cost buyer has an incentive to offer the mechanism as well:

M̂ (x, σ) = arg max
[pL,qL,pH ,qH ]

(qL (u− pL) + (1− qL)VL (σ))

s.t. M is feasible given Vw (σ) and β0 (x, θ)

qH (u− pH) + (1− qH)VH (σ) ≥ u− cH (IR H-Buyer)

The last inequality implies that the H buyer does not want to deviate from M to a mechanism

that prescribes trade at cH for sure. We will argue that this is suffi cient to ensure that H does not

find any other mechanism profitable, given suitably chosen beliefs by the seller.

A mechanism M can be part of an equilibrium only if it maximizes the payoff of the L buyer

as defined before:

Lemma 7 If σ∗ is an equilibrium constellation with payoffs VH (σ) , VL (σ) and ratio θ (σ), then

M (x) ∈ M̂ (x, (VH , VL, θ)) for all x.

The intuition behind the lemma is as follows. First, sellers must not receive positive profits.

Otherwise, the low cost buyer could use the slack in the seller’s IR constraint to make himself
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better off as shown in the proof. Second, suppose the theorem would not hold and there would be

some feasible mechanism M ′ such that the low cost buyer prefers the allocation (p′L, q
′
L) strictly

to the allocation in the original mechanism (pL, qL). If the high cost buyer strictly prefers the

allocation from M ′ to the one from M as well, then moving from M to M’would make both types

of buyers strictly better off. Increasing the prices slightly would not change this, but would strictly

increase the profit of the seller. Thus, M ′ would dominate M and hence M cannot be part of an

equilibrium. If, on the other hand, the high cost buyer prefers the original mechanism M (weakly)

over M ′, then, following the deviation to M ′, Divinity requires that the seller updates towards the

low cost buyer. Again, increasing prices slightly (in particular, increasing pL) would imply that the

seller’s expected profits from accepting M ′ are strictly postive and thus, the deviating mechanism

M ′ would be accepted. Thus, M ′ would be a profitable deviation for the low cost buyer.

Proof : We will be slightly informal in the usage of ε - changes. (I can introduce the complete
ε-δ arguments.)

Step 1: Sellers’profits must be zero. Suppose in an equilibrium σ∗ there is some x and some

M∗ (x) such that π (x,M∗) > 0. Then qM
∗

L must be positive. (Otherwise, if qL = 0, then, for profits

to be positive, pH must be strictly larger than cH . But then the H buyer could deviate to M ′ with

pH = cH +ε, ε small, which would be accepted. This contradicts π > 0, since ε is arbitrary.) Given

qM
∗

L is positive, qM
∗

H must be positive as well by incentive compatibility for the H buyer. Now, we

construct again a deviation to a mechanismM ′: Choose p′L and q
′
L such that a) the high cost buyer

H is indifferent between
(
pM
∗

L , qM
∗

L

)
and (p′L, q

′
L) and b), p′L < pM

∗
and c) M ′ =

[
p′L, q

′
L, p

M∗
H , qM

∗
H

]
is strictly profitable for the seller given his prior β0- since M

∗ was strictly profitable, decreasing pL
only slightly keeps M ′ strictly profitable. (To ensure truthful reporting by the H buyer, one can

decrease pH slightly.) Given the single crossing property, the L buyer strictly prefers M ′ to M∗

while, by definition,the H buyer (weakly) prefersM∗, thus, αL (M ′, x, σ) < 1 < αH (M ′, x, σ) =∞.
Therefore, divinity requires that β (M ′, x) ≤ β0 (x, σ). Since M ′ is strictly profitable, the seller

accepts the offer, A (M ′, x, σ) = 1, by sequential rationality. Since M ′ makes L strictly better off

than M∗ (x), M∗ is not an optimal offer and cannot be part of the equilibrium. Thus, assuming

positive profits for the seller leads to a contradiction.

Step 2. Suppose, contrary to the claim of the theorem that there is some feasible M ′ such

that the low cost buyer is strictly better off than with the equilibrium mechanism M∗ (x) where

M ′ and M∗ both satisfy the constraints of the maximization program. (This is the only way in

which the Theorem can fail. Every equilibrium mechanism M∗ must satisfy the constraints of the

maximization program.)

2a): Suppose M ′ makes both buyers strictly better off if accepted (and reports are truthful).

Then,M ′′ defined by increasing the prices slightly relative toM ′,M ′′ = [p′L + εL, q
′
L + εL, p

′
H + εH , q

′
H + εH ],
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is strictly profitable for the seller while being strictly incentive compatible for the buyers (by choos-

ing suitable values for εL and εH small enough). Thus, M ′′ dominates M∗ and M∗ is not part of

an undominated equilibrium.

2b): Suppose M ′ makes the low cost buyer strictly better off while making the H buyer weakly

worse off. By assumption, H is weakly better off with M∗ and therefore, αH (M ′, x, σ) = ∞. By
assumption, M ′ makes L strictly better off and therefore, αL (M ′, x, σ) < 1. Thus, the posterior

of the seller must be β (x,M ′) ≤ β0 (x, σ). Finally, there will be some feasible M ′′ close to M ′

(see below for its construction) such that M ′′ makes L better off than M∗ but not H, while M ′′

is strictly profitable for the seller at β0 (and in particular at β (x,M ′′) ≤ β0). Therefore, M
′′ is

accepted by the seller and, hence, M ′′ is a profitable deviation for L.

M ′′ can be constructed as follows. First, suppose the incentive compatibility constraint for the

L buyer does not bind in M ′. Then, M ′′ can be found by increasing p′L slightly while keeping q
′
L

constant. The incentice compatibility contraints for the H buyer still hold (a forteriori) and M ′′

is strictly profitable after the price increase. If the incentive compatibility constraint for the L

buyer does bind, the incentive compatibility constraint of the H buyer does not bind (by the single

crossing condition). Then, M ′′ can be found by increasing p′L slightly while increasing q
′
L to keep

L indifferent between (p′L, q
′
L) and the new allocation (q′′L, p

′′
L). QED

The next lemma characterizes M̂ . Define ∆ to be the surplus for the H buyer, ∆ = (u− cH)−
VH . Define a cutoff x∗ and a probability qCL

x∗ (VH , VL, θ)

{
= 1 if u− cH −max {∆, 0} > VL

∈ [0, 1] s.t. u− E [c|x, θ]− βmax {∆, 0} = VL
,

qCL (VH , VL, θ)

{
= u−cH−VH

u−cL−VH if u− cH − VH > 0

= 0 if u− cH − VH ≤ 0
.

where x∗ is well defined because the left hand side of the equality is (strictly) increasing in β.12

Lemma 8 A mechanism M (x) is in M̂ (x, (VH , VL, θ)) if and only if for x < x∗, M (x) =

[1, E0 [c|x, θ] , 1, E0 [c|x, θ]] and for all x > x∗,

a) if ∆ > 0, then M (x) =
[
qCL , cL, 1, cH

]
12One can show that whenever x > x∗,

u− Ec < qCL (u− cL) +
(
1− qCL

)
VL

(by rewriting the function X (qL) in the appendix).
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b) if ∆ < 0, then M (x) = [0, pL, 0, pH ]

c) if ∆ = 0, then M (x) = [0, pL, qH , cH ] for any qH ∈ [0, 1].

Note: For x < x∗ the mechanisms M (x) is (incentive) effi cient. This is not true when x is

strictly larger but close to x∗. When x ∼= x∗ the L buyer is almost indifferent between trading at

Ec with probability one and trading at cL with probability qCL . However, the H buyer is strictly

worse off when the mechanism changes from trading at Ec to trading at cH . (The seller receives

always zero profits.)

Proof : The L Buyers maximization problem can be written

max qL (u− pL) + (1− qL)VL

s.t (1− β) qL (pL − cL) + βqH (pH − cH) = 0 (IR Seller)

qL (u− pL) + (1− qL)VH = qH (u− pH) + (1− qH)VH (IC H Buyer)

qL (u− pL) + (1− qL)VH ≥ u− cH (IR H Buyer)

We know the zero profit (IR seller) constraint is binding. The IC H Buyer constraint must

be binding as well, otherwise increasing qL and/or decreasing pL would make the L Buyer strictly

better off (it cannot be that qL = 1 and pL = cL at the same time, thus, the proposed change

keeps the seller’s IR constraint). A solution to the maximization problem exists by continuity of

the objective function. Let M be a solution. We want to characterize M .

We consider three cases:

Case 1: ∆ = u − cH − VH > 0. The H buyer is strictly better off trading at cH rather than

continuing search. At the optimal solution, it has to be that qH = 1. (see Note 1).

We can use qH = 1 to rewrite the maximization problem (see Note 2):

max
qL

X (qL) ≡ qLu− (1− β) qLcL + βu− βqLu− β (1− qL)VH − βcH + (1− qL)VL

st. qL (u− pL) + (1− qL)VH ≥ u− cH

The objective function X is now linear in qL and the derivative is

∂

∂qL
X = u− (1− β) cL − βu+ βVH − VL

= u− (1− β) cL − βcH + βcH − βu+ βVH − VL
= (u− Ec)− β∆− VL
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The derivative of X is positive if x < x∗,

(u− Ec)− β∆ > VL.

and a positive derivative implies that we get qL = 1. At qL = 1, the ic constraint for the H buyer

requires qL ≤ qH = 1 (given the single crossing condition, H cannot trade at a lower price and

lower probability); then the seller’s IR constraint requires pL = pH = Ec. Hence

M (x) = [1, Ec, 1, Ec] x < x∗

Thus, the IR H Buyer constraint does not bind, qL (u− pL) + (1− qL)VH = u− Ec ≥ u− cH .

The derivative of X is negative if x > x∗ , since at x∗, u − E [c|x∗] −max {β∆, 0} = VL and

β (x) is strictly increasing in x,

(u− Ec)− β (x) ∆ < VL , x > x∗.

In this case we get a corner solution because the H IR constraint will bind at qL = 0 (this is

immediate by inspection of the constraint and the hypothesis of the case). Given qH = 1, a binding

IR constraint implies pH = cH (by inspection of the buyer’s IR constraint and the H buyer’s IC

constraint.) Rewriting the H buyers’IC constraint and using the seller’s IR (zero profit) constraint

implies (see Note 3):

pL = cL, pH = cH , qCL =
(u− cH − VH)

(u− cL − VH)

where qCL > 0 by the hypothesis of the case. So, the mechanism must be

M (x) =

[
(u− cH − VH)

(u− cL − VH)
, cL, 1, cH

]
x > x∗.

To check: Rewriting the linear function X (qL) at qCL shows that

X
(
qCL
)
≡ qCLu− (1− β) qCL cL + βu− βqCLu− β

(
1− qCL

)
VH − βcH +

(
1− qCL

)
VL

= qCL (u− cL) +
(
1− qCL

)
VL + β

(
u− cH − VH − qCL (u− cL − VH)

)
= qCL (u− cL) +

(
1− qCL

)
VL + β

(
u− cH − VH −

(u− cH − VH)

(u− cL − VH)
(u− cL − VH)

)
= qCL (u− cL) +

(
1− qCL

)
VL.

And since X (1) = u− Ec and X (0) = β∆ + VL, we have

X
(
qCL
)

= qCL (u− cL) +
(
1− qCL

)
VL ≥ u− Ec = X (1)

31



if and only if β∆ + VL ≥ u− Ec.

Case 2: ∆ = u − cH − VH < 0. (This is simple but needs expansion.) Note that we can no

longer assume that qH = 1. Suppose x < x∗. Then (u− E0c) > VL. Then, the following mechanism

satisfies the constraints of the maximization program

[1, E0c, 1, E0c] ,

and since (u− E0c) > VL, the L buyer strictly prefers the above mechanism to any mechansim

with a trading probability of zero. Thus, we are looking for the best mechanism with qL > 0. The

buyer IC contraint and the seller’s zero profit conditon imply that every mechanism in which qL > 1

must specify pH = pL = Ec: By incentive compatibility for the H buyer, qH ≥ qL and (therefore)

pH ≥ pL. We can write the price pH as the average of trading with probability qL at the price pL
and trading with probability d at some higher price e,

qH = qL + d and pH =
qL

qL + d
pL +

d

qL + d
e.

Since VH < u− cH , the H buyer IC constraint implies that e < cH if d > 0. Otherwise, if e ≥ cH

qH (u− pH) + (1− qH)VH = qL (u− pL) + d (u− e) + (1− qL − d)VH

≤ qL (u− pL) + d (u− cH) + (1− qL − d)VH

< qL (u− pL) + (1− qL)VH

Profits of the seller are

π = (1− β) qL (pL − cL) + βqH (pH − cH) = qL (pL − Ec) + dβ (e− cH)

and so, whenever (e− cH) < 0 and d ≥ 0, profits are zero only if (pL − Ec) ≥ 0. Clearly, the best

mechanism with pL ≥ Ec is the mechanism prescribing trade at Ec with probability one. Thus

M (x) = [1, Ec, 1, Ec] if x < x∗.

Suppose x > x∗. Then (u− E0c) < VL. The preceeding reasoning implies that for every mechanism

with qL > 0, pL ≥ Ec. But since (u− E0c) < VL, the L buyer would rather not trade and hence

any mechanism must have qL = 0. Given qL = 0, pL ≥ cH if qH > 0; however, the H buyer would

rather not trade than trade at p ≥ cH and hence, qH = 0. Hence, every mechanism must be

M = [0, pL, 0, pH ] if x > x∗.
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Case 3: ∆ = u − cH − VH = 0. Again, if qL > 1, then pL = Ec. Therefore, if x < x∗ and

(u− E0c) > VL

M (x) = [1, Ec, 1, Ec] if x < x∗.

If x > x∗, then (u− E0c) > VL implies that qL = 0. Since ∆ = 0 implies that the H buyer is

indifferent between trading at cH and not trading, we get

M (x) = [0, cL, qH , cH ] if x > x∗.

Note 1: We want to show that if ∆ > 0, then qH = 1. The seller’s IR constraint implies that

it must be that qH > 0 (since otherwise trading at cH for sure would be better). Given qH > 0,

pH ≤ cH . Given VL < u − cL − s, it must be the case that u − pL > VL, i.e., trading is strictly

better for the L buyer. This follows since otherwise M ′ = [ε, cL, 1, cH ] would be strictly better for

the L buyer andM ′ satisfies the constraints of the maximization program for ε small enough, given

u− cH > VH . Thus, qL > 0 and pL < u− VL.

If qL > 0 then, by pH ≤ cH , it must be that pL ≥ cL for profitability. Suppose qH < 1. Given the

mechanismM = [qL, pL, qH , pH ] we can construct a mechanismM ′ = [qL + ∆, pL, 1, qHpH + (1− qH) cH ].

This mechanism is (weakly) profitable by feasibility of M and pL ≥ cL. For ∆ small enough, the

mechanism M ′ is incentive compatible for the H buyer: Since M satisfies the IC constraint of

the H buyer, the H buyer prefers (qH , pH) to (qL, pL). By ∆ > 0, the H buyer strictly prefers

(1, qHpH + (1− qH) cH) to (qH , pH). Hence, we can choose ∆ small enough such that the H buyer

prefers (1, pH + (1− qH) cH) to (qL + ∆, pL) so M ′ satisfies H IC. The L buyer prefers M ′ strictly

to M for any ∆ > 0 given u− pL > VL.

Note 2: Given qH = 1, the H-IC constraint becomes:

qL (u− pL) + (1− qL)VH = u− pH
⇒ pH = u− qL (u− pL)− (1− qL)VH

and the zero profit condition becomes

(1− β) qL (pL − cL) + β1 (pH − cH) = 0

⇒ (1− β) qL (pL − cL) + β (u− qL (u− pL)− (1− qL)VH − cH) = 0

(1− β) qLpL − (1− β) qLcL + βu− βqLu+ βqLpL − β (1− qL)VH − βcH = 0

qLpL − (1− β) qLcL + βu− βqLu− β (1− qL)VH − βcH = 0

− (1− β) qLcL + βu− βqLu− β (1− qL)VH − βcH = −qLpL
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So the objective function is

qLu− qLpL + (1− qL)VL

qLu− (1− β) qLcL + βu− βqLu− β (1− qL)VH − βcH + (1− qL)VL

Note 3: At the corner solution,

pH = u− qL (u− pL)− (1− qL)VH = cH

and thus, the seller’s zero profit condition

(1− β) qL (pL − cL) + qHβ (pH − cH) = 0

(1− β) qL (pL − cL) + 0 = 0

⇒ pL = cL

and rewriting the seller’s IC constraint:

u− qL (u− pL)− (1− qL)VH = cH

u− qL (u− cL)− (1− qL)VH = cH

u− VH − cH = qL (u− cL − VH)

⇒ qL =
u− VH − cH
u− cL − VH

QED

We have not characterized mechanisms at the point x∗. But note that the behavior at x∗ does

not affect equilibrium if the signals distribution does not contain atoms.

The problem is that at x = x∗ the number of possible combinations for equilibrium mechanisms

becomes quite large. As shown in the appendix, we can characterize equilibrium via a proba-

bility α such that if ∆ > 0, the mechanism is a mixture of
[
qCL , cL, 1, cH

]
with probability

α and [1, E0 [c|x, θ] , 1, E0 [c|x, θ]] with probability (1− α). The resulting (expected) trading

probabilities and prices for given α are

qαL = αqcL + (1− α) 1, pαL = αcL + (1− α)Ec

qαH = 1, pαH = αcH + (1− α)Ec.
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Lemma 9 At x = x∗, a mechanism M (x) is in M̂ (x, (VH , VL, θ)) if and only if

a) if ∆ > 0, then M (x) = [qαL, pαL, 1, pαH ], any α ∈ [0, 1]

b) if ∆ ≤ 0, then M (x) = [qL, E0 [c|x, θ] , qL, E0 [c|x, θ]], any qL ∈ [0, 1]

Note: The mechanisms M (x) at x = x∗ can be implement as outcomes of a price setting game

with a public randomization device.

Proof : We can rewrite the binding IC and seller IR constraints from Note 2 as:

pH = u− qLu− (−qLpL)− (1− qL)VH

pH (qL, VH) = u− qLu− (− (1− β) qLcL + βu− βqLu− β (1− qL)VH − βcH)− (1− qL)VH(2)

pL (qL, VH) = (1− β) cL − βu/qL + βu+ β (1− qL)VH/qL + βcH/qL (3)

Let α be defined via

qL = αqCL + (1− α)

α
(
1− qCL

)
= 1− qL ⇒ α =

1− qL
1− qCL

and using the definition of qCL :

α =
(1− qL) (u− cL − VH)

(u− cL − VH)− (u− cH − VH)
=

(1− qL) (u− cL − VH)

cH − cL

⇒ 1− α =
qL − qCL
1− qCL

=
qL (u− cL − VH)− (u− cH − VH)

(u− cL − VH)− (u− cH − VH)

1− α =
qL (u− cL − VH)− (u− cH − VH)

cH − cL

then

pL =
1

qL
(αcL + (1− a)Ec)

=
αqCL
qL

cL +
(1− α)

qL
(βcH + (1− β) cL)

=
αqCL
qL

cL +
(1− α)

qL
cL +

(1− α)

qL
β (cH − cL)

= cL +
1

qL

qL (u− cL − VH)− (u− cH − VH)

cH − cL
β (cH − cL)

= cL + (u− cL − VH)β − β (u− cH − VH) /qL = pL (qL, VH)
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and similarly for pH ,

pH = (1− a)Ec+ αcH

= βcH + (1− β) cL + α (cH − βcH − (1− β) cL)

= βcH + (1− β) cL + α ((1− β) cH − (1− β) cL)

= βcH + (1− β) cL + α (1− β) (cH − cL)

= βcH + (1− β) cL +
(1− qL) (u− cL − VH)

cH − cL
(cH − cL) (1− β)

= βcH + (1− β) cL + (1− qL) (u− cL − VH) (1− β)

= βcH + (1− β) cL + (1− qL) (u− cL − VH)− β (1− qL) (u− cL − VH)

= pH (qL, VH)

QED

8.2 Proof of Existence, Theorem

We will now state a couple of claims that together proof existence of equilibrium. First, we introduce

some notation. Define the set ΞS =
{
x ∈ [0, 1]3 |x∗ ≤ x∗∗

}
and using

qmin
w : u− s

qmin
w

= u− cH − s.

and define

WS =
{

(VH , VL, θ) ∈ [u− cL − s, u− cH − s]2 × R+| θ ∈
[
qmin
H ,

(
qmin
L

)−1
]}
.

where we bounded θ to avoid problems at zero and infinity. We define the cutoff x∗∗ via

X∗∗ (VH , VL, θ) =


1 if u− cH − VH > 0

[x∗, 1] if u− cH − VH = 0

0 if u− cH − VH < 0

and we get a correspondence Ξ (VH , VL, θ) ≡ x∗ ×X∗∗ × qCL (VH , VL, θ) which maps WS ⇒ ΞS . A

vector x defines per period trading probabilities:

qL (x) = max
{
FL (x∗) + qCL (FL (x∗∗)− FL (x∗)) , qmin

L

}
,

qH (x) = max
{
FH (x∗) + (FL (x∗∗)− FL (x∗)) , qmin

H

}
.
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Also, x defines expected payoffs W (x) = VL (x)× VH (x)× θ (x) via

V̂L (x) = u−
∫ x∗

0
E [c|x, θ] fL (x)

qL
dx− qCL (FL (x∗∗)− FL (x∗))

qL
cL −

1

qL
s,

V̂H (x) = u−
∫ x∗

0
E [c|x, θ] fH (x)

qH
dx− FH (x∗∗)− FH (x∗)

qH
cH −

1

qH
s,

θ (x) =
qH (x)

qL (x)
.

and VL (x) = max
{
V̂L (x) , u− cH − s

}
and VH (x) = max

{
V̂H (x) , u− cH − s

}
. If qw (x) = qmin

w ,

payoffs are minimal Vw (x) = u− cH − s. This will ensure that the bound on qw is not binding in
the fixed point.

Claim 6 W × Ξ : ΞS ×WS ⇒WS × ΞS.

Proof: It is immediate that Ξ : WS ⇒ ΞS . ForW : ΞS ⇒WS , note that θ (x) ∈
[
qmin
H ,

(
qmin
L

)−1
]

by force. V̂L (x) ≥ u−cH−s by force. V̂L (x) ≤ u−cL−s by inspection: If qL (x) >
(
qmin
L

)
, then the

expected price (the second and third term in the definition of V̂L (x)) is at least cL, so payoffs are at

most u−cL−s . If qL (x) =
(
qmin
L

)
, then s

qL(x) = cH+s implies that V̂L (x) ≤ u−cH−s < u−cL−s.
QED

Claim 7 The mapping W × Ξ is convex valued and upper hemi continuous.

Proof: First, Ξ: The component X∗∗ is convex valued by definition and upper hemi continuous

by inspection. Continuity of qCL follows by inspection as well (noting that every VH ∈ WS is

bounded away from u− cL). Continuity of x∗ (VH , VL, θ) (recall

x∗ (VH , VL, θ) =

{
1 if u− cH −max {u− cH − VH , 0} > VL

x ∈ [0, 1] s.t. u− E [c|x, θ]− βmax {u− cH − VH , 0} = VL
)

follows by inspection, once we rewrite,

u− E [c|x, θ]− βmax {u− cH − VH , 0} = VL

u− (β (x, θ) cH + (1− β (x, θ)) cL)− β (x, θ) max {u− cH − VH , 0} = VL

u− cL − β (x, θ) (cH − cL + max {u− cH − VH , 0}) = VL.

Any solution x ∈ (0, 1) (if it exists) is continuous in the parameters, since the belief β (x, θ) =
x

x+(1−x)θ is strictly increasing in x and the term in brackets is strictly positive by u− cH − VH ≤ s
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(from VH ∈WS) and cH−cL > s (by assumption on s). It is never the case that x = 0 is a solution

since VL ∈WS implies VL < u− cL.) If the solution x = 1, the solution is again continuous in the

parameters.

Second, W : The component θ (x) = qH(x)
qL(x) is continuous, since qL (x) ≥ qmin

L > 0 by definition.

The component V̂L (x) is continuous (and likewise VH . (recall, if V̂L (x) ≥ u− cH −s does not bind,
then

V̂L (x) = u−
∫ x∗

0
E [c|x, θ] fL (x)

qL (x)
dx− qCL (FL (x∗∗)− FL (x∗))

qL (x)
cL −

1

qL (x)
s)

Again, qL (x) is bounded away from 0 by definition. Therefore, inspections reveals that the "ex-

pected price" (the second and third term) is continuous in x. Note that when FL (x∗)+qCL (FL (x∗∗)− FL (x∗)) <

qmin
L , the "expected price" can be less than cL. QED

Claim 8 If (x∗, V ∗L , V
∗
H ,θ
∗) ∈W×Ξ (x∗, V ∗L , V

∗
H ,θ
∗), then there exists an equilibrium σ∗ with payoffs

V ∗L , V
∗
H and a mechanism characterized by x∗.

Proof: We construct σ∗. We first construct the on-equilibrium parameters: Let σ∗1 be some

constellation such that M∗ (x) is given by x∗, θ∗ :

M∗ (x) =


[1, Ec, 1, Ec] If x ≤ x∗[
qCL , cL, 1, cH

]
if x ∈ (x∗, x∗∗)

[ 0, cL, 1, cH ] if x ≥ x∗∗.

and let A∗ (x,M∗ (x)) = 1 (this satisfies optimality for the seller, sinceM∗ is weakly profitable) and

let β (x,M∗) = β0 (x, θ∗) (The fact that the prior satisfies divinity was the reason for choosing this

refinement over stronger one, like D1.) Also, let R∗ (x,M∗ (x) , w) = w. Reporting truthfully will

be optimal once we show that for the constructed constellation σ1, continuation payoffs are given

by Vw (σ∗1) = V ∗w and V
∗
H ≤ V ∗L . We will also show that θ (σ∗1) = θ∗. For this we need to show that

the solution is not on the boundary, where we artificially set qw (x) = qmin
w and V ∗w (x) = u−cH−s.

First, qL (x∗) > qmin
L . Suppose qL (x∗) = qmin

L . Then V ∗L = u− cH − s (by s
qminL

= cH + s). Since

V ∗H ∈WS implies V ∗H ≥ u− cH − s, x∗ = 1. However, if x∗ = 1, then qL (x∗) ≥ FL (x∗) = 1. Thus,

qL (x∗) = qmin
L leads to a contradiction. If qH (x∗) = qmin

H , then V ∗H = u− cH − s and hence x∗∗ = 1

by definition. Thus qH (x∗) = FH (x∗∗) = 1, contradicting qH (x∗) = qmin
H .

Second, V ∗L > u− cH − s. If V ∗L = u− cH − s, then x∗ = 1, and hence

V̂L (x) = u−
∫ 1

0
E [c|x, θ∗] fL (x)

1
dx− 1

1
s > u− cH − s
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where the inequality follows from θ∗ > 0. Similarly, V ∗H = u−cH−s implies x∗∗ = 1. If FL (x∗) = 0,

then

V ∗L (x) = u− cL −
1

qCL
s

and from qCL =
u−cH−V ∗H
u−cL−V ∗H

, V ∗L (x) = u−cL−
u−cL−V ∗H

s s = V ∗H = u−cH−s. Contradicting our earlier
finding. Since FL (x∗) > 0 implies FH (x∗) > 0 (recall, no atom at x = 0),

V̂H (x) = u−
∫ x∗

0
E [c|x, θ] fH (x)

1
dx− 1− FH (x∗)

1
cH −

1

1
s > u− cH − s

using
∫ x∗

0 E [c|x, θ] fH(x)
1 dx < cH , from θ∗ > 0, again. Thus, V ∗L = VL (σ∗1) and V ∗H = VH (σ∗1)

and θ∗ = θ (σ∗1) as claimed. Finally, V ∗L > V ∗H follows since otherwise, x∗ = 1. At x∗ = 1,

the expected price paid by the L buyer is strictly lower than the expected price paid by the H

buyer, contradicting V ∗L < V ∗H . Given V
∗
L > V ∗H , incentive compatibility of M

∗ (x) follows from

M∗ (x) ∈ M̂ (x, (VH , VL, θ)).

Now we construct the off equilibrium part. Let R∗ (x,M ′, w) = w whenever incentive compat-

ible. Let us restrict attention to incentive compatible mechanisms (any not incentive compatible

mechanisms is equivalent to some incentive compatible mechanism). Given R∗, set A∗ (M ′, x) = 0,

for all M ′ that are weakly non-profitable at the prior,

(1− β0 (x, θ∗)) qM
′

L

(
pM
′

L − cL
)

+ β0 (x, θ∗) qM
′

H

(
pM
′

H − cH
)
≤ 0.

and set β (x,M ′) = β0 for all unprofitable M
′. Thus, A∗ is sequentially rational for these mecha-

nisms, no buyer wants to deviate and offer them, and β (x,M ′) = β0 satisfies devinity

Set β (x,M ′) = 0 if trading according to M ′ is worse for the H buyer than either trading at cH
or continuing without trading. Suppose the H buyer strictly prefers to trade at cH (the other case

follows similarly). Set A (x,M ′) = 0 if M ′ is weakly unprofitable at β (x,M ′) = 0. If M ′ is strictly

profitable at β (x,M ′) = 0, then the following mechanism is strictly profitable at β (x,M ′′) = β0,

M ′′ =
[
qM
′

L , pM
′

L , 1, cH

]
andM ′′ incentive compatible: sinceM ′ was incentive compatible, theH buyer preferred

(
qM
′

H , pM
′

H

)
over

(
qM
′

L , pM
′

L

)
, and (1, cH) over

(
qM
′

H , pM
′

H

)
by assumption. Thus, M ′′ is incentive compatible

as well. Hence, M ′′ satisfies the constraints of the maximization problem for M̂ and the L buyer

must prefer the maximizer M∗ (x) over M ′′ (x) and, by equivalence, prefers M∗ (x) over M ′ (x).

Furthermore, M∗ (x) is strictly better than M ′ for the H buyer by our starting hypothesis. Hence,

no buyer prefers to deviate to M ′.

39



Any other off equilibrium mechanism M ′ that is feasible and profitable satisfies the constraints

of the maximization problem for M̂ . Thus, the L buyer prefers M∗ to M ′ and therefore, setting

β (x,M ′) = 1 satisfies devinity. Since M ′ satisfies the contraint for the H buyer, pM
′

H ≤ cH and

hence, M ′ must be weakly unprofitable at β (x,M ′) = 1 and we can set A (x,M ′) = 0 without

violating sequential rationality. QED

Existence is an immediate consequence of the above claims. Claim 1 and 2 imply that a fixed

point of W × Ξ exists by Kakutani’s theorem. Claim 3 showed how to construct an equilibrium

from that fixed point. QED

8.3 Proof of Theorem 2

Case 2: ∆k = 0 for all k large enough. Again x∗k → 0. If x∗k → a, then the difference between

the cutoff seller and the expected price becomes zero. This is because the signal will converge to

a ∈ (0, 1),

limE0 [c|x∗k, θk]−
∫ x∗k

a
E0 [c|x, θk]

dFL (x)

FL
(
x∗k
)

= lim
1

1 +
1−x∗k
x∗k

θk
cH −

∫ x∗k

a

1

1 + 1−x
x θk

cH
dFL (x)

FL
(
x∗k
)

= lim
1

1 + 1−a
a θk

cH −
1

1 + 1−a
a θk

cH = 0.

Hence, indifference by the L buyer implies,

limE0 [c|x∗k, θk] cH −
∫ x∗k

a
E0 [c|x, θk] cH

dFL (x)

FL
(
x∗k
) = lim

sk

FL
(
x∗k
)

0 = lim
sk

FL
(
x∗k
) .

So, expected search cost for the L buyer are zero. ∆k = 0 requires

lim cH −
∫ x∗k

a
E0 [c|x, θk] cH

dFH (x)

FH
(
x∗k
) = lim

sk

FH
(
x∗k
)

= lim
sk

FL
(
x∗k
) FL (x∗k)

FH
(
x∗k
) = lim

sk

FL
(
x∗k
) 1− a

a

= 0

Since the lower bound is not zero, if L can search at almost no cost for x ∈ [a, x∗k], H can do so as

well. Since H should be indifferent between trading at cH and searching, this would require that
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the expected price conditional on searching becomes cH . However, since the ratio is bounded

θk =
FH (x∗k) + (1− FH (x∗∗k ))

FL
(
x∗k
)

≥ FH (x∗k)

FL
(
x∗k
) =

a

1− a ,

the expected price becomes

lim

∫ x∗k

a

1

1 + 1−x
x θk

cH
dFH (x)

FH
(
x∗k
) ≤ 1

1 + 1−a
a

a
1−a

cH =
1

2
cH .

And hence, it would pay for the H buyer to search, rather than accept cH .

Case 3: ∆k > 0 for all k large enough. The additional problem relative to Case 2 is that, when

∆k > 0, the cutoff type is determined differently and the expected number of searches of the L

type also depend on the trading probability qCk when x > x∗k. We will show that the influence of

the additional probability qCk becomes negligible.

First, the same arguments as before imply (a forteriori) that x∗k → a. Now, clearly it must be

the case that it does not pay for the H buyer to try and trade at cL,

sk

qCk
(
1− FH

(
x∗k
)) > cH − cL (4)

⇒ sk
qCk

> cH − cL.

If ∆k > 0, only the L buyer is searching. If the per period probability of trading of the L buyer

becomes zero, the expected cost of any seller become equal to cL,

if FL (x∗k) + qCk (1− FL (x∗k))→ 0 then θk →∞ and β0 (x, θk)→ 0, ∀x ∈ (0, 1) .

Hence, the expected payoff of the L buyer must be

VkL → u− cL.

And therefore, expected accumulated search cost become zero,

sk

FL
(
x∗k
)

+ qCk
(
1− FL

(
x∗k
)) → 0.

By (4), the trading probability qCk (1− FL (x∗k)) becomes zero fast relative to sk, while the overall

trading probability FL (x∗k) + qCk (1− FL (x∗k)) must be large relative to sk. Hence, the probability
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of trading at cL, conditional on trading at all, must become zero,

qCk (1− FL (x∗k))

FL
(
x∗k
)

+ qCk
(
1− FL

(
x∗k
)) → 0.

Thus, as claimed at the beginning of this case, the probability qCk does not affect the equilibrium

outcome in the limit. In particular, the H buyer can search for a seller with x ≤ x∗k at almost no

cost in the limit,

lim
sk

FL
(
x∗k
) FL (x∗k)

FH
(
x∗k
) = lim

sk

FL
(
x∗k
) 1− a

a

= 0

where the second line from the fact that the search cost for the L buyer become zero. Of course,

if the H buyer could also search for x ≤ x∗k at almost no cost, his payoffs cannot be lower than

u− cH , since the expected cost of the seller with x ≤ x∗k becomes equal to cL.

Hence, when k is small, it cannot be the case that either ∆k = 0 or ∆k > 0. So, it must be the

case that we are in case 1, ∆ < 0, for which we found the expected trading price to be equal to the

prior, as claimed. QED

8.4 Proof of Theorem 4

A complete proof of the theorem follows. Substituting the indifference condition of the L buyer we

find I (x∗k, θk)

I (x∗k, θk)FH (x∗k) = cHFH (x∗k)−
∫ x∗k

0
E0 [c|x, θk] dFH (x)− sk

= cHFH (x∗k)−
∫ x∗k

0
E0 [c|x, θk] dFH (x)−

(
E0 [c|x∗k, θk]FL (x∗k)−

∫ x∗k

0
E0 [c|x, θk] dFL (x)

)

=

∫ x∗k

0
(cH − E0 [c|x, θk]) dFH (x)−

∫ x∗k

0
(E0 [c|x∗k, θk]− E0 [c|x, θk]) dFL (x)

and using that

dFH (x) =
x

1− xdFL (x)
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we get that I (x∗k, θk) has the sign of∫ x∗k

0

(
(1− E0 [c|x, θk])

x

1− x − E0 [c|x∗k, θk] + E0 [c|x, θk]
)
dFL (x)∫ x∗k

0

((
1− 1

1 + (1−x)
x θk

)
x

1− x −
x∗k

x∗k +
(
1− x∗k

)
θk

+
1

1 + (1−x)
x θk

)
dFL (x)

Let Ck be the likelihood ratio
fL(x∗k)
fH(x∗k)

θk at the cutoff seller,

E0 [c|x∗k, θk] =
1

1 + dFL(x∗)
dFH(x∗)θ

=
1

1 + Ck
.

And note that
fL (x∗)

fH (x∗)
θk =

1− x
x∗

θk = C

implies that

θk = Ck
x∗k

1− x∗k
We asssume that the price E0 [c|x∗k, θk] at the cutoff seller converges (along some subsequence); let
C̄ = limCk. We use Ck to rewrite the integral,

∫ x∗k

0

 x

1− x −
x∗k

x∗k +
(
1− x∗k

)
Ck

x∗k
1−x∗k

+
x

x+ (1− x)Ck
x∗k

1−x∗k

(
1− x

1− x

) dFL (x)

=

∫ x∗k

0

1− 1

1 + (1−x)
x Ck

x∗k
1−x∗k

 x

1− x −
x∗k

x∗k +
(
1− x∗k

)
Ck

x∗k
1−x∗k

+
1

1 + (1−x)
x Ck

x∗k
1−x∗k

 dFL (x)

=

∫ x∗k

0

1− 1

1 + (1−x)
x Ck

x∗k
1−x∗k

 x

1− x −
1

1 + Ck
+

1

1 + (1−x)
x Ck

x∗k
1−x∗k

 dFL (x)

=

∫ x∗k

0

 (1−x)
x Ck

x∗k
1−x∗k

1 + (1−x)
x Ck

x∗k
1−x∗k

x

1− x −
1

1 + Ck
+

1

1 + (1−x)
x Ck

x∗k
1−x∗k

 dFL (x)

Now, we rewrite the integral, by using

x (t) =
x∗

1 + x∗t

which implies that
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x (t)

1− x (t)
=

x∗

1+x∗t

1− x∗
1+x∗t

=
x∗

1 + x∗t− x∗ =
x∗

1 + x∗ (t− 1)

and recall that F x
∗
k (t) ≡ 1− FL(x(t))

FL(x∗k)
so that

fx
∗
k (t) = −fL (x (t))

FL
(
x∗k
) x′ (t) .

Substituting into the integral and rewriting further yields13

=

∫ x∗k

0

 (1−x)
x Ck

x∗k
1−x∗k

1 + (1−x)
x Ck

x∗k
1−x∗k

x

1− x −
1

1 + Ck
+

1

1 + (1−x)
x Ck

x∗k
1−x∗k

 dFL (x)

= −
∫ ∞

0

 1+x∗(t−1)
x∗ Ck

x∗k
1−x∗k

1 + 1+x∗(t−1)
x∗ Ck

x∗k
1−x∗k

x∗

1 + x∗ (t− 1)
− 1

1 + Ck
+

1

1 + 1+x∗(t−1)
x∗ Ck

x∗k
1−x∗k

 (fL (x (t)))x′ (t) dt

=

∫ ∞
0

 1+x∗(t−1)
1−x∗k

Ck

1 + 1+x∗(t−1)
1−x∗k

Ck

x∗

1 + x∗ (t− 1)
− 1

1 + Ck
+

1

1 + 1+x∗(t−1)
1−x∗k

Ck

FL (x∗k) f
x∗k (t)

=

∫ ∞
0

(
(1 + x∗ (t− 1))Ck

1− x∗k + (1 + x∗ (t− 1))Ck

x∗

1 + x∗ (t− 1)
− 1

1 + Ck
+

1− x∗k
1− x∗k + (1 + x∗ (t− 1))Ck

)
FL (x∗k) f

x∗k (t)

=

∫ ∞
0

(
Ckx

∗

1− x∗k + (1 + x∗ (t− 1))Ck
+

(1− x∗k) (1 + Ck)− (1− x∗k + (1 + x∗ (t− 1))Ck)

(1 + Ck)
(
1− x∗k + (1 + x∗ (t− 1))Ck

) )
FL (x∗k) f

x∗k (t)

= x∗FL (x∗k)

∫ ∞
0

(
Ck

1− x∗k + (1 + x∗ (t− 1))Ck
− tCk

(1 + Ck)
(
1− x∗k + (1 + x∗ (t− 1))Ck

)) fx∗k (t)

Hence

I (x∗k, θk) =
x∗FL (x∗k)

FH
(
x∗k
) ∫ ∞

0

(
Ck

1− x∗k + (1 + x∗ (t− 1))Ck
− tCk

(1 + Ck)
(
1− x∗k + (1 + x∗ (t− 1))Ck

)) fx∗k (t)

13To rewrite the nominator we use
(1− x∗k) (1 + Ck)− (1− x∗k + (1 + x∗ (t− 1))Ck) =
(1− x∗k) (1 + Ck)− (1− x∗k)− (1 + x∗ (t− 1))Ck =
(1− x∗k)Ck − (1 + x∗ (t− 1))Ck =
(1− x∗k)Ck − Ck − x∗tCk + x∗Ck =
−x∗tCk
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Note that

lim
x∗FL (x∗k)

FH
(
x∗k
) = lim

FL (x∗k)

fH
(
x∗k
) +

x∗fL (x∗k)

fH
(
x∗k
)

= lim
FL (x∗k)

fH
(
x∗k
) + (1− x∗k) ≥ 1. (5)

The integrand converges pointwise

lim
x∗k→0

Ck
1− x∗k + (1 + x∗ (t− 1))Ck

− tCk

(1 + Ck)
(
1− x∗k + (1 + x∗ (t− 1))Ck

)
=

C̄

1− 0 + (1 + 0) C̄
− tC̄(

1 + C̄
) (

1− 0 + (1 + 0 (t− 1)) C̄
)

=
C̄

1 + C̄
− tC̄(

1 + C̄
) (

1 + C̄
)

=
1(

1 + C̄
) (

1 + C̄
) (1 + C̄ − t

)
and if Ck ≥ 1 (as we will show later), then for t > 1, the integrand is bounded from below by a

linear function,

Ck
1− x∗k + (1 + x∗ (t− 1))Ck

− tCk

(1 + Ck)
(
1− x∗k + (1 + x∗ (t− 1))Ck

)
≥ − tCk

(1 + Ck)
(
1− x∗k + (1 + x∗ (t− 1))Ck

)
= − tCk

(1 + Ck)
(
1 + Ck + x∗k (Ck (t− 1)− 1)

)
≥ − tCk

(1 + Ck) (1 + Ck)
.

The lower bound will allow us to conclude that the integrand does not diverge to infinite fast

on its right tail than the mass converges to zero: Suppose λ ∈ (0,∞). Fix any T >> 1. From

the observation before and from the way Φ was defined (the limit dominates the elements of the

sequence),

0 ≥
∫ ∞
T

(
Ck

1− x∗k + (1 + x∗ (t− 1))Ck
− tCk

(1 + Ck)
(
1− x∗k + (1 + x∗ (t− 1))Ck

)) fx∗k (t) ≡ ε (T )

≥ −
∫ ∞
T

tCk
(1 + Ck) (1 + Ck)

e−λt
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and for T → ∞, the latter term is zero (since the exponential dominates the linear function).

Hence, the value of the intergral on (T,∞) is ε (T ) and with T →∞, ε (T )→ 0. Thus, the limit of

the integral is

lim

∫ ∞
0

(
Ck

1− x∗k + (1 + x∗ (t− 1))Ck
− tCk

(1 + Ck)
(
1− x∗k + (1 + x∗ (t− 1))Ck

)) fx∗k (t)

= lim

∫ T

0

(
Ck

1− x∗k + (1 + x∗ (t− 1))Ck
− tCk

(1 + Ck)
(
1− x∗k + (1 + x∗ (t− 1))Ck

)) fx∗k (t)

+ lim

∫ ∞
T

(
Ck

1− x∗k + (1 + x∗ (t− 1))Ck
− tCk

(1 + Ck)
(
1− x∗k + (1 + x∗ (t− 1))Ck

)) fx∗k (t)

= lim
T→∞

lim

∫ T

0

(
Ck

1− x∗k + (1 + x∗ (t− 1))Ck
− tCk

(1 + Ck)
(
1− x∗k + (1 + x∗ (t− 1))Ck

)) fx∗k (t)− lim
T→∞

ε (T )

= lim
T→∞

∫ T

0
lim

(
Ck

1− x∗k + (1 + x∗ (t− 1))Ck
− tCk

(1 + Ck)
(
1− x∗k + (1 + x∗ (t− 1))Ck

)) lim fx
∗
k (t)

= lim
T→∞

∫ T

0

C̄(
1 + C̄

)2 (1 + C̄ − t
)
λe−λtdt

=
C̄(

1 + C̄
)2 (1 + C̄ − 1

λ

)
.

Suppose λ ∈ (0,∞). We now characterize equilibria with ∆k ≤ 0. (To characterize equilibria

∆k > 0, we need to take care of qCk .) Under which conditions ∆k < 0 for all k large enough? If

∆k < 0, the equilibrium must involve complete pooling in the limit: both buyers search and the

expected price must be equal to the prior expected price (the search cost of the L buyer converge

to zero; hence, the expected price conditional on x ≤ x∗k must be equal to the price at the cutoff

type for indifference.) Hence Ck → C̄ = 1. Furthermore, ∆k < 0 requires I (x∗k, θk) > 0 for all k.

Inspecting the limit expression shows that his is the case only if

1 + 1− 1

λ
≥ 0⇔ λ ≥ 1

2
.

Hence, we will get a pooling equilibrium only if λ ≥ 1
2 . Now, under which conditions ∆k = 0 for

all k large enough? ∆k = 0 requires that

1 + C̄ − 1

λ
= 0.
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Hence, ∆k = 0 for k large only if the limit price is

p̄ =
1

1 + C̄
= λ.

And hence, ∆k = 0 only if λ ≤ 1
2 (otherwise, p̄ >

1
2 , which contradicts seller’s zero profits.)

Importantly, we get a separating equilibrium in the limit (Ck →∞) with ∆k = 0 only if λ = 0.

If Ck →∞ and λ > 0, then the integral converges to one, observing that

lim

∫ T

0

(
Ck

1− x∗k + (1 + x∗ (t− 1))Ck
− tCk

(1 + Ck)
(
1− x∗k + (1 + x∗ (t− 1))Ck

)) fx∗k (t)

+ lim

∫ ∞
T

(
Ck

1− x∗k + (1 + x∗ (t− 1))Ck
− tCk

(1 + Ck)
(
1− x∗k + (1 + x∗ (t− 1))Ck

)) fx∗k (t)

and for any ε, there is a k′ and T large enough such that for all k larger than that, the integral is

at least

1− ε+

∫ ∞
T

(1− ε− εt) fx∗k (t)

and, given T large enough and λ ∈ (0,∞), the intergral must be at least 1−2ε. Hence, if ∆k = 0 for

all k, then the integral is bounded away from zero for large enough k, contradicting I (x∗k, θk) = 0

for all k.

Finally, under what conditions ∆k > 0 for all k? Note that x∗k is determined by

u− E [c|x∗k, θk]− β0 (x∗k, θk) ∆k

= u− 1

FL
(
x∗k
)

+
(
1− FL

(
x∗k
))
qCk

[
FL (x∗k)E [p|x ≤ x∗k] + (1− FL (x∗k)) q

C
k cL + sk

]
Rewriting

sk

FL
(
x∗k
)

+
(
1− FL

(
x∗k
))
qCk

=

[
E [c|x∗k, θk]−

FL (x∗k)

FL
(
x∗k
)

+
(
1− FL

(
x∗k
))
qCk
E [p|x ≤ x∗k]−

(1− FL (x∗k)) q
C
k

FL
(
x∗k
)

+
(
1− FL

(
x∗k
))
qCk

cL + β0 (x∗k, θk) ∆k

]
sk = FL (x∗k) [E [c|x∗k, θk]− E [p|x ≤ x∗k, L]] + (1− FL (x∗k)) q

C
k E [c|x∗k, θk] + β0 (x∗k, θk) ∆k

(
FL (x∗k) + (1− FL (x∗k)) q

C
k

)
⇒ 1 =

FL (x∗k) [E [c|x∗k, θk]− E [p|x ≤ x∗k, L]]

sk
+

(1− FL (x∗k)) q
C
k β0 (x∗k, θk) cH + β0 (x∗k, θk) ∆k

(
FL (x∗k) + (1− FL (x∗k)) q

C
k

)
sK

and since qCk ≤ sk and ∆k ≤ sk we have

1 ≥ FL (x∗k) [E [c|x∗k, θk]− E [p|x ≤ x∗k, L]]

sk
+(1− FL (x∗k))β0 (x∗k, θk) cH+β0 (x∗k, θk)

(
FL (x∗k) + (1− FL (x∗k)) q

C
k

)
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which implies by β0 (x∗k, θk)→ 0 that the last terms are of vanishing order relative to the first term,

hence

sk = FL (x∗k) [E [c|x∗k, θk]− E [p|x ≤ x∗k, L]] + γkFL (x∗k) [E [c|x∗k, θk]− E [p|x ≤ x∗k, L]]

with γk → 0.

The incentive for the H buyer to search is at least

cH − E [p|x ≤ x∗k]−
sk

FH
(
x∗k
)

≤ cH − E [p|x ≤ x∗k]−
FL (x∗k)

FH
(
x∗k
) [E [c|x∗k, θk]− E [p|x ≤ x∗k]]− γk

FL (x∗k)

FH
(
x∗k
) [E [c|x∗k, θk]− E [p|x ≤ x∗k]]

≤ I (x∗k, θk)− γk
FL (x∗k)

FH
(
x∗k
) [E [c|x∗k, θk]− E [p|x ≤ x∗k]] .

And note that, whenever I (x∗k, θk) does not diverge, γk
FL(x∗k)
FH(x∗k)

[E [c|x∗k, θk]− E [p|x ≤ x∗k]] must
vanish to zero.

Suppose ∆k > 0 and λ > 0. Then, Ck →∞ and, since ∆k > 0, we have x∗∗k = 1 and

Ck = θk
1− x∗k
x∗k

=
1

FL
(
x∗k
) 1− x∗k

x∗k

and we can use this to rewrite

I (x∗k, θk) =
x∗FL (x∗k)

FH
(
x∗k
) ∫ ∞

0

(
Ck

1− x∗k + (1 + x∗ (t− 1))Ck
− tCk

(1 + Ck)
(
1− x∗k + (1 + x∗ (t− 1))Ck

)) fx∗k (t)

=
1

FH
(
x∗k
) ∫ ∞

0

(
1

1− x∗k + (1 + x∗ (t− 1))Ck
− t1

(1 + Ck)
(
1− x∗k + (1 + x∗ (t− 1))Ck

)) fx∗k (t)

and with λ ∈ (0, 1),

lim I (x∗k, θk) = lim
1

FH
(
x∗k
)

(1 + CK)
− 1

λ (1 + Ck)
2 FH

(
x∗k
)

= lim
1

FH
(
x∗k
)

(1 + CK)

(
1− 1

λ (1 + Ck)

)
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and from

FH (x∗k) (1 + CK) =
FH (x∗k)

FL
(
x∗k
) 1− x∗k

x∗k
+ FH (x∗k)

and from (5) we get

lim
FH (x∗k)

FL
(
x∗k
) 1− x∗k

x∗k
+ FH (x∗k) = lim

FH (x∗k)

FL
(
x∗k
)
x∗k

+ 0

= lim
fH (x∗k)

FL
(
x∗k
) 1

x∗k
≤ 1

and so

lim I (x∗k, θk) ≥ lim

(
1− 1

λ (1 + Ck)

)
= 1.

Hence, I (x∗k, θk) does not diverge and the incentive for the H buyer to search when ∆k > 0 and

λ ∈ (0,∞) is at least

lim I (x∗k, θk)− γkZk ≥ 1− 0 > 0.

Thus, ∆k > 0 for all k only if λ = 0. QED

8.5 Proof of Lemma

We know that when λ > 1
2 , ∆k < 0 for all k (since ∆k = 0 requires λ ∈

(
0, 1

2

)
while ∆k > 0 requires

λ = 0. We want to know the limit of I (x∗k, θk),

I (x∗k, θk) =
x∗FL (x∗k)

FH
(
x∗k
) ∫ ∞

0

(
Ck

1− x∗k + (1 + x∗ (t− 1))Ck
− tCk

(1 + Ck)
(
1− x∗k + (1 + x∗ (t− 1))Ck

)) fx∗k (t)

and using that

Ck = θk
1− x∗k
x∗k

=
FH (x∗k)

FL
(
x∗k
) 1− x∗k

x∗k

we get

I (x∗k, θk) =
1

1− x∗k

∫ ∞
0

(
1

1− x∗k + (1 + x∗ (t− 1))Ck
− t

(1 + Ck)
(
1− x∗k + (1 + x∗ (t− 1))Ck

)) fx∗k (t)
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and by Ck → 1,

lim I (x∗k, θk) = lim
1

1− x∗k

∫ ∞
0

(
1

1− x∗k + (1 + x∗ (t− 1))Ck
− t

(1 + Ck)
(
1− x∗k + (1 + x∗ (t− 1))Ck

)) fx∗k (t)

=

∫ T

0

(
1− t

(2) (2)

)
f
∗

(t) + lim εk (T )

= 1− 1

λ4
.

QED

8.6 Sketch of Proof for Conjecture 2

Sketch: Let p̄ ∈ (cL, gHcH + gLcL). Such a p̄ exists. Given sk small enough, let x
p
k be such that

cH − p̄ = sk
FH(xPk )

. Take x∗∗k ∈
(
xPk , 1

)
such that with

θk =
FH
(
xPk
)

+
(
FH (x∗∗k )− FH

(
xPk
))

FL
(
xPk
) ,

we have

cH −
1

FH
(
xPk
) ∫ xPk

a

x

x+ (1− x) θk
cHdFH (x) =

sk

FH
(
xPk
) .

Such an x∗∗k exists: With x∗∗ = 1, θk → ∞, and so 1
FH(xPk )

∫ xPk
a

x
x+(1−x)θk

cHdFH (x) → cL < p̄.

With x∗∗ → xPk , θk → 0, so 1
FH(xPk )

∫ xPk
a

x
x+(1−x)θk

cHdFH (x)→ cH > p̄. Let θ̄ be the limit of θk (a

subsequence of θk if necessary), then∫ xPk

a

x

x+ (1− x) θk
cHdFH (x)→ a

a+ (1− a) θ̄
cH = p̄.

Note that the expected price for the L buyer is the same,∫ xPk

a

x

x+ (1− x) θk
cHdFL (x)→ a

a+ (1− a) θ̄
cH = p̄.

Since a > 0,

lim
xPk→a

sk

FL
(
xPk
) = lim

FH
(
xPk
)

FL
(
xPk
) sk

FH
(
xPk
)

=
a

1− a
sk

FH
(
xPk
) =

a

1− a (cH − p̄) .
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Thus, the L buyer strictly prefers to search, rather than accept cH

cH −
1

FL
(
xPk
) ∫ xPk

a

x

x+ (1− x) θk
cHdFL (x)→ cH − p̄ <

a

1− a (cH − p̄)←
sk

FL
(
xPk
)

from a < 1
2 . Also, for sk small enough, the L buyer strictly prefers to trade at x = xPk ,

xPk
xPk +

(
1− xPk

)
θk
cH −

∫ xPk

a

x

x+ (1− x) θk
cHdFL (x)→ 0 <

a

1− a (cH − p̄)←
sk

FL
(
xPk
) . (6)

Now, for sk small enough, a constellation with mechanism offer

MP
k (x)


[0, p, 0, p] if x > x∗∗k

[0, 0, 1, cH ] if x ∈
(
xPk , x

∗∗
k

)
[1, Ec, 1, Ec] if x < xPk

will be part of an equilibrium. The crucial observation is this: For x < xPk , the L buyer offers the

optimal mechanism. For some x > xPk , the L buyer would prefer a mechanism with [1, Ec, 1, Ec]

rather than not trading (by continuity, following (6)). However, given ∆k = u − cH − VH = 0,

whenver the L buyer prefers a mechanism with qL > 0 to not trading, the H buyer strictly prefers

the mechanism as well. Thus, devinity has not bite. QED

51


