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1 Introduction

Instances abound when a principal, e.g. society, is interested in the investigation of a certain

hypothesis. Indeed, important policy decisions may depend on whether, say, there is a

causal link between passively inhaling other people’s cigarette smoke and the occurrence of

cancer, or whether global warming trends are caused by certain emissions related to specific

kinds of economic activity. Often, though, it will not be practical for “society” to carry out

the necessary research itself; it will rather have to delegate the investigation to a group of

scientists, or, as is the case in my model, to a single scientist. The problem with that, of

course, is that this scientist will typically have interests of his own, some of which may even

be endogenously generated by society’s incentive scheme.

As is well known from the principal-agent literature, when an agent’s actions cannot

easily be monitored, his pay must be made contingent on his performance, so that he have

proper incentives to exert effort. Thus, the scientist will only get paid, or will get paid a

substantial bonus if, and only if, he proves his hypothesis. While this may well provide him

with the necessary incentives to work, unfortunately, it might also give the agent incentives

to fabricate, or manipulate, his data, in order to make it appear as though his hypothesis was

proved. In a setting involving Bayesian learning on the agent’s part, my model investigates

how optimally to achieve the dual objective of providing the agent with the right incentives

to work, while also making sure that he not be tempted to engage in manipulations and

trickery, even if said manipulations were not verifiable in a court of law, or even completely

unobservable. Alternatively, one could interpret my model as a model of technology adoption:

An agent is hired expressly to test some new production method, or some new way of doing

business, yet the boss cannot monitor whether the successes he observes are really due to the

new method, or whether the agent has surreptitiously availed himself of an old established

method to produce the observed results.

In my model, the agent can either shirk, in which case he will never have a success, but

which gives him some flow benefit, or he can cheat, which gives him an apparent success

according to some known distribution, or he can do the risky thing, and be honest. If the

hypothesis is correct, honesty yields successes with a higher frequency than cheating; if the

hypothesis is incorrect, honesty never yields a success. The principal can only observe if

there has been a success or not; he cannot observe the agent’s actions, and, in particular, he

does not observe if a success has been achieved by honest means or whether it is the result

of manipulation. My goal is to characterize the optimal incentive scheme which will make

sure that the agent is always honest up to the first breakthrough at least.

While actually investigating the hypothesis, the agent increasingly grows pessimistic
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about the thesis being true as long as no breakthrough arrives. At the first breakthrough,

though, all uncertainty is resolved, and the agent will know for sure that the hypothesis is

true. Thus, depending on the incentive scheme, this learning aspect might give the agent

an experimentation motive for using arm 1, i.e. he might be willing to forgo current payoffs

in order to gather information which might then potentially be parlayed into higher payoffs

come tomorrow. Indeed, when designing the incentive scheme, it will be one of the principal’s

goals to kindle this experimentation motive, by making information valuable to the agent.

I show that even though the principal is only interested in the first breakthrough the

agent achieves, he will only reward the agent for the (m + 1)-st breakthrough, with m ≥ 1,

in order to deter the agent from engaging in manipulation, which otherwise might seem

expedient to him in the short term. Now, m will be chosen high enough that even for an

off-equilibrium agent, who has achieved his first breakthrough via manipulation, m break-

throughs are so unlikely to be achieved by cheating that he will prefer to be honest after his

first breakthrough. This will put the cheating off-equilibrium agent at a distinct disadvan-

tage, as, in contrast to the honest on-path agent, he will not have had a discontinuous jump

in his belief. This difference in beliefs between on-equilibrium and off-equilibrium agents

in turn can be leveraged by the principal, who enjoys full commitment power; thus, the

principal can induce investigation of the hypothesis by endogenously creating a high value

of information for the agent.

To provide adequate incentives in the cheapest way possible, the principal will endeavor

to give the lowest possible value to a dishonest agent, given the continuation value he has

promised the on-equilibrium agent. While paying only for the (m + 1)-st breakthrough

ensures that off-equilibrium agents will not continue to cheat, they will nevertheless continue

to update their beliefs after their first success, and might be tempted to switch to shirking

once they have grown too pessimistic about the hypothesis, a possibility that, as is well

known from the literature on strategic experimentation with bandits, gives them a positive

option value. In order to minimize this option value, even to push it down to 0, the optimal

incentive scheme will make sure that the off-equilibrium agent will either shirk throughout,

or that he will exactly imitate the on-equilibrium agent. This is achieved by keeping the

most pessimistic of all off-equilibrium agents at least indifferent between being honest and

shirking, whenever the on-equilibrium agent pursues further breakthroughs. As conditional

on no breakthrough arriving, the off-equilibrium agent continuously becomes even more

pessimistic, rewards must be increasing in the time of the second breakthrough. Since after

the second breakthrough, all off-equilibrium agents will cease learning also, rewards will be

flat in the calendar times of later breakthroughs.

The rest of the paper is set up as follows: section 2 reviews some relevant literature;
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section 3 introduces the model; section 4 analyzes the optimal mechanism through which

the principal gives the agent a certain given continuation value; section 5 characterizes the

optimal mechanism before the first breakthrough, and section 6 concludes.

2 Related Literature

Holmström & Milgrom (1991) analyze a case where, not unlike in my model, the agent

performs several tasks, some of which may be undesirable from the principal’s point of view.

The principal may be able to monitor certain activities more accurately than others. They

show that in the limiting case with two activities where one activity cannot be monitored

at all, incentives will only be given for the activity which can in fact be monitored; if the

activities are substitutes in the agent’s private cost function, incentives are more muted, if

they are complements, incentives are steeper, than in the single task case. While their model

could be extended to a dynamic model where the agent controls the drift rate of a Brownian

Motion signal,1 the learning motive I introduce fundamentally changes the basic trade-offs

involved. Indeed, in my model, the optimal mechanism extensively leverages the fact that

only an honest agent will have had a discontinuous jump in his beliefs.

The paper that is probably closest in spirit to mine is Manso (2010), who analyzes a

simple, undiscounted two-period, model, where an agent can either shirk, try to produce

in some established manner with a known success probability, or experiment with a risky

alternative. He shows that, in order to induce experimentation, the principal will optimally

not pay for a success in the first period, and might even pay for early failure,2 while a

success in the second period is always rewarded. My continuous-time investigation confirms

Manso’s (2010) central intuition that it is better to give incentives through later rewards;

furthermore, the richer action and signal spaces in my fully-fledged dynamic model yield

additional insights into the structure of the optimal incentive scheme.

To capture the learning aspect of the agent’s problem, I model it as a bandit problem.3

Bandit problems have been used in economics to study the trade-off between experimentation

and exploitation since Rothschild’s (1974) discrete-time single-agent model. The single-

1See Holmström & Milgrom (1987).
2This is an artefact of the discrete structure of the model and the limited signal space; indeed, in Manso’s

(2010) model, early failure can be a very informative signal that the agent has not exploited the known
technology, but has rather chosen the risky, unknown alternative. In continuous time, by contrast, arbitrary
precision of the signal can be achieved by choosing a critical number of successes that is high enough, as will
become clear infra.

3See Bergemann & Välimäki (2008) for an overview of this literature.
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agent two-armed exponential model, a variant of which I am using, has first been analyzed

by Presman (1990). Strategic interaction among several agents has been analyzed in the

models by Bolton & Harris (1999, 2000), Keller, Rady, Cripps (2005), Keller & Rady (2010),

who all investigate the case of perfect positive correlation between players’ two-armed bandit

machines, as well as by Klein & Rady (2010), who investigate the cases of perfect, as well

as imperfect, negative correlation. Klein (2010) investigates the case where bandits have

three arms, with the two risky ones being perfectly negatively correlated. While the afore-

mentioned papers all assumed that players’s actions, as well as the outcomes of their actions,

were perfectly publicly observable, Rosenberg, Solan, Vieille (2007), as well as Murto &

Välimäki (2009), analyze the case where actions are observable, while outcomes are not.

Bonatti & Hörner (2010) analyze the case where actions are not observable, while outcomes

are. Bergemann & Välimäki (1996, 2000) consider strategic experimentation in buyer-seller

interactions. The contribution of this paper is to introduce the question of optimal incentive

provision into a fully-fledged dynamic bandit model.

3 The Model

There is one principal and one agent and an exogenously fixed end date T . The agent

operates a bandit machine with three arms, i.e. one safe arm yielding the agent a private

benefit flow of s, one that is known to yield breakthroughs according to Po(λ0) (arm 0),

and one that either yields breakthroughs according to Po(λ1) (with initial probability p0) or

never yields a breakthrough (arm 1). It is commonly known that λ1 > λ0 > 0.

Now, let (b0,t, b1,t) ∈ B2
t denote the agent’s information available at time t. Specifically,

Bt is the set of all countable subsets of [0, t]; its generic element (b0,t, b1,t) = ((t̃1, t̃2, ..., t̃ξ), (t1, t2, ..., tζ)) ∈
B2

t denotes the calendar times of breakthroughs achieved on both arms before time t. If

there has been no breakthrough on arm i before time t, I set bi,t ≡ ∅. A strategy for the

agent is then simply a mapping (k0, k1) : [0, T ] × B2
t → {(a, b) : a + b ≤ 1}; it describes

what fraction of his flow resource4 the agent devotes to arm 0, or arm 1, respectively, with

1− k0(t, b0,t, b1,t)− k1(t, b0,t, b1,t) being invested in the safe option.

The first breakthrough achieved on arm 1 at time t yields the principal a payoff of

e−rtΠ, which is only realized at date T . The principal has full commitment power but

cannot condition payments on whether a breakthrough is achieved on arm 0 or 1. The idea

is that he cannot observe the agent’s actions, or that the latter are non-contractible, i.e.

they could not be verified in a court of law. Indeed, whether a scientist’s claim will turn

4Think of an agent who distributes his time amongst various tasks, for instance.
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out to have been correct or to have been the result of data manipulation can often only be

ascertained ex post, if at all, and will certainly hardly ever be contractible. At the outset,

the principal commits to a payment schedule conditioning on the history he observes, i.e. on

the history of breakthroughs. The principal’s objective is to implement experimentation on

arm 1 at least up until the first breakthrough, and to do so at minimal wage costs.

Specifically, let zt ∈ Bt denote the public information available at time t, which is

coarser than the agent’s private information, with the generic element zt ≡ (t1, t2, ..., tσ) ∈
Bt denoting the calendar times of all breakthroughs prior to time t; if no breakthrough

has occurred before time t, I set zt ≡ ∅. An incentive scheme is given by a function

w̃ : {(t, zt) : t ∈ [0, T ], zt ∈ Bt} → R, with
∫ t

0
w̃(t̃, zt̃) dt̃ denoting the monetary transfers from

the principal to the agent up to time t given the public information available at the time of

the transfers. The agent is protected by limited liability, i.e. w̃(t, zt) ≥ 0 at all t. Clearly, as

it is the principal’s goal to get the agent to exert effort in order to achieve a breakthrough,

it is never a good idea for him to pay the agent in the absence of a breakthrough; as

the principal is only interested in the first breakthrough, the notation can be simplified

somewhat: ht := w̃(t,(t))
r

denotes the immediate lump sum reward for a breakthrough at time

t; wt := Et

[∫ T

t
e−r(t̃−t)w̃(t̃, zt̃) dt̃

]
(with zt̃ = (t, ..., tσ)) is the expected continuation value

of the agent after his first breakthrough, with the expectation being taken with respect to

his information at time t (as well as his expected future actions). As the agent always

has the option of continuously pulling the safe arm, it is clear that, in equilibrium, wt ≥
s(1− e−r(T−t)). In this notation, the principal’s objective is to minimize

r

∫ T

0

e−rt−λ1

∫ t
0 pτ dτλ1pt(ht + wt) dt

subject to appropriate incentive constraints making sure the agent always uses arm 1.

Clearly, whenever the agent uses arm 1, he gets new information about its quality; this

learning is captured in the evolution of his (private) belief that arm 1 is good. Denoting the

time t belief by pt, Bayes’s rule implies that in the absence of a breakthrough on arm 1

pt =
p0e

−λ1

∫ t
0 k1,q dq

p0e
−λ1

∫ t
0 k1,q dq + 1− p0

;

if arm 1 has yielded a breakthrough at some time t, we have that pq = 1 for all q ∈]t, T ]. As

the principal anticipates the agent’s actions in equilibrium, he will know what pt is; however,

as deviations are unobservable, they lead to the agent’s holding some private belief p̂t, which

will be different from the public belief pt off the equilibrium path of play.
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4 After the Breakthrough–The Optimal Continuation

Scheme

The purpose of this section is to derive the optimal scheme by which the principal will

deliver a promised continuation value of wt given a first breakthrough has occurred at time

t. His goal will be to find a scheme which maximally discriminates between an agent who

has achieved his breakthrough on arm 1, as he was supposed to, and an agent who has been

“cheating”, i.e. who achieved the breakthrough on arm 0. Put differently, for any given

promise wt to the on-equilibrium agent, it is the principal’s goal to push the off-equilibrium

agent’s continuation value ωt down to as low a level as possible, as this will give the principal

the biggest bang for his buck in terms of incentives. As an off-equilibrium agent always has

the option of simply using his safe arm forever, we have that ωt ≥ s(1− e−r(T−t)). Since he

also has the option of imitating the on-equilibrium agent’s strategy, we know that ωt ≥ p̂twt,

where p̂t ∈ [pt, p0] denotes his (off-equilibrium) belief at time t. Writing ωt as a function

of p̂t, we have that in the optimal wage scheme ωt = max{s(1 − e−r(T−t)), p̂twt}, a result

summarized in the following proposition:

Proposition 4.1 In the optimal mechanism delivering an expected continuation payoff of wt

to the agent if he has achieved his first breakthrough on arm 1 at time t, the off-equilibrium

expected continuation value of an agent who has achieved his first breakthrough on arm 0 at

time t is given by ωt = max{s(1−e−r(T−t)), p̂twt}, with p̂t denoting his time t (off-equilibrium)

belief.

The principal only rewards the (m+1)-st success by paying a lump sum ŵ(τ) with m an

integer satisfying pT

(
λ1

λ0

)m

> e(λ1−λ0)T , and ŵ being an increasing function of τ , the time

of the agent’s second breakthrough.

Proof: Proof is by construction, see infra.

In order to force off-equilibrium agents down to their lower bound, the principal will

endeavor to ensure that any off-equilibrium agent will always either exactly imitate the on-

equilibrium agent or play safe forever. Clearly, arm 0 is dominated for an on-equilibrium

agent, who knows that arm 1 is good. In order to make arm 0 dominated for all types of

off-equilibrium agents,5 the principal will only pay for the m-th breakthrough after time t,

where m is chosen sufficiently high that even for the most pessimistic of all possible off-

equilibrium agents, m breakthroughs are more likely on arm 1 than on arm 0. As λ1 > λ0,

5The type of an off-equilibrium agent is defined by his belief p̂t at the moment of his first breakthrough
(which occurs on arm 0).
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such an m obviously exists. Now, in order to make sure that whenever any off-equilibrium

agent uses arm 1 at all, he does so if, and only if, the on-equilibrium agent also uses arm

1, the principal will reward the m-th breakthrough in a way that depends on the time of

the first breakthrough after t. Indeed, before achieving their first breakthroughs on arm 1,

off-equilibrium agents continue to learn about the quality of arm 1 whenever they use it;

therefore, their incentives for playing arm 1 versus using the safe arm vary with the new

information they are accumulating. The trick is now either to reward the on-equilibrium

agent in such a manner that even the most optimistic off-equilibrium agent would rather

play safe throughout, or, alternatively, to reward him so much that even the most pessimistic

off-equilibrium agent is at least indifferent between using arm 1 and the safe arm at all times.

This latter option implies that the reward for the m-th breakthrough will be increasing in

the time of the second breakthrough.

One additional problem to be taken care of is that for intermediate values of wt, some

off-equilibrium agents might be willing to experiment for a while, and then switch to safe,

once they will have become too pessimistic to carry on at a time an on-equilibrium agent

would still be experimenting. Whenever agents have a strict incentive to employ this course

of action, the option value of doing so would give them a payoff above the lower bound we

have identified. To prevent this, the principal will not give out any rewards if the second

breakthrough occurs before some time τ̂ , thus implementing the safe action on [t, τ̂ ] for both

the on-equilibrium agent as well as all types of off-equilibrium agents. After τ̂ , though,

rewards will be so high that even the most pessimistic off-equilibrium agents will play risky,

with τ̂ chosen appropriately to give the on-equilibrium agent an expected continuation value

of wt. In the following, I shall make this construction precise.

For the rest of this section, let t and wt be fixed, and let m be an integer, e.g. the

smallest, satisfying pT

(
λ1

λ0

)m

> e(λ1−λ0)T . As λ1 > λ0, such an m exists. The principal will

now pay a lump sum of ŵ(τ) (τ > t) at the time of the m-th breakthrough after time t, the

first of which occurs at time τ , and nothing otherwise. Clearly, this scheme makes arm 0

dominated for any off-equilibrium agent with any plausible belief p̂t ∈ [pt, p0].
6

We now consider the family of functions w(.; t, p̂t) : [t, T ] −→ R, where w(τ ; t, p̂t) is the

lump sum that would have to be paid after the m-th breakthrough, with the first of these

m breakthroughs occurring at time τ , in order to keep the off-equilibrium agent indifferent

6The formula for m explicitly only makes sure the agent prefers the strategy “always stick with arm 1,
whatever befall” over the strategy “always stick with arm 0”. This is sufficient for our purposes, though,
because once it is optimal for the agent to play arm 0, he will no longer learn, and therefore it will always
remain optimal for him to play arm 0 in the future. Moreover, on account of the linear structure of the
agent’s optimization problem, it is never strictly optimal for him to distribute his resources over several arms
at the same time.
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between using arm 1 or using the safe arm at time τ given his belief that arm 1 is good is

given by p̂te−λ1(τ−t)

p̂te−λ1(τ−t)+1−p̂t
, i.e. under the assumption that he has all the time experimented at

full throttle on arm 1. To state the next lemma, I define w1 := w(.; t, 1).

Lemma 4.2 w(.; t, p̂t) is strictly increasing for any p̂t < 1; it is strictly decreasing in p̂t < 1

for any given τ . Moreover, it is continuous in both arguments. w1 is constant.

Proof: Using the indifference conditions, it is easy to derive a recursive representation for

w for any given m. Indeed, fix t and p̂t, and let V i
τ (t̃) be the player’s value at time t̃ if he

is i breakthroughs removed from collecting the lump sum reward and his first breakthrough

after t has previously occurred at time τ . (If i = m, I set τ ≡ t̃ and suppress the argument

t̃.) Define p̂τ := p̂te−λ1(τ−t)

p̂te−λ1(τ−t)+1−p̂t
.

Then, we have that V m
τ = (p̂τλ1V

m−1
τ − s)dt + (1 − rdt)(1 − p̂τλ1dt)(V m

τ + V̇ m
τ dt),

i.e. (r + p̂τλ1)V
m
τ = p̂τλ1V

m−1
τ − s + V̇ m

τ . Now, by indifference, V m
τ = V̇ m

τ = 0. Thus,

V m−1
τ = s

p̂τ λ1
. As given that the first breakthrough has occurred at time τ , the lump sum

wτ is constant, it follows that V̇ m−n
τ = 0 for all n = 1, ..., m − 1. Noting that after the

first breakthrough, the agent will know that the arm is good, we have, by the same logic

as before, that (r + λ1)V
m−n
τ = λ1V

m−n−1
τ − s, yielding V m−n−1

τ = s
λ1

+ r+λ1

λ1
V m−n

τ , with

V 0
τ ≡ w(τ ; t, p̂t). Thus, w(τ ; t, p̂t) is increasing in τ and decreasing in p̂t.

For p̂t = 1, the same steps show that w1 is constant.

Now, given m and t, it will be useful to define a mapping f : L[t, T ] → R by the

following equation:7

f(h) := r
λm

1

(m− 1)!

×
∫ T

t

∫ T

τ

(1−λ1(τ−t))e−(λ1+r)(τ̌−t)(τ̌−τ)m−2(χ−1−λ1(τ̌−τ))
(
h(τ) +

s

r
(1− e−r(T−τ̌))

)
dτ̌ dτ.

Thus, f(w(.; t, p̂t)) is the time-t-expected payoff of the on-equilibrium agent given the in-

centive scheme w(.; t, p̂t) conditional on his always using arm 1 after his first breakthrough.

Clearly, f(w(.; t, p̂t)) is decreasing in p̂t.

If wt ≤ f(w1), I set

ŵ(τ) =

{
0 if τ < τ̂

w1 if τ ≥ τ̂ ,

7L[t, T ] denotes the space of Lebesgue-integrable real-valued functions defined on the interval [t, T ].
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with τ̂ chosen such that wt = f(ŵ) + s(1− e−r(τ̂−t)). In this case, the on-equilibrium agent

will play safe on [t, τ̂ [, and arm 1 forever thereafter; all off-equilibrium agents will always

play safe and thus collect s(1− e−r(T−t)).

Now, suppose wt > f(w1).

If wt > f(w(.; t, pt)), I set ŵ(τ) = w(τ ; t, pt) + δ for all τ ∈ [t, T ], where δ > 0 is the

(unique) constant chosen so that wt = f(ŵ). In this case, all off-equilibrium agents will

strictly prefer to use arm 1 all the way, and their respective payoffs are p̂twt.

If wt ≤ f(w(.; t, pt)), we set

ŵ(τ) =

{
0 if τ < τ̂

w(τ ; t, pt) if τ ≥ τ̂ ,

with τ̂ again chosen such that wt = f(ŵ) + s(1− e−r(τ̂−t)). In this case, the on-equilibrium

agent will play safe on [t, τ̂ [, and arm 1 forever thereafter; all off-equilibrium agents will

behave in the exact same fashion, and thus collect p̂twt.

Clearly, no player will switch back to playing safe at any time after their first break-

through, because whenever players play risky, it is the case that ŵ(τ) ≥ w1, and w1 is what

is needed to make a player with a belief of 1 willing to play arm 1 at any time when there

are still m breakthroughs to go; thus, they are definitely willing to play risky when there are

fewer breakthroughs to go (and a weakly higher lump sum to be gotten).

Thus, in summary, the optimal mechanism delivering a certain given continuation value

of wt to the on-equilibrium agent must take care of two distinct concerns in order to harness

maximal incentive power at a given cost. On the one hand, it must make sure off-equilibrium

agents never continue to play arm 0; this is achieved by only rewarding the (m + 1)-st

breakthrough. On the other hand, the mechanism must preclude the more pessimistic off-

equilibrium agents from switching between the safe arm and arm 1 according to a timing

schedule that is different from that of the on-equilibrium agent. Indeed, if they did, they

could collect an additional option value as opposed to a situation where they were forced to

behave as an on-equilibrium agent would. This latter concern can be remedied by having

rewards that are increasing in the time of the second breakthrough in precisely such a way

as to neutralize the effect of off-equilibrium agents’ learning.

5 Before the Breakthrough–The Optimal Incentive Scheme

Whereas in the previous section, I have investigated how a principal would optimally deliver

a given continuation value wt, the purpose of this section is to understand to what extent
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the principal would optimally incentivize agents via continuation values wt as opposed to

immediate rewards ht, which are paid out right at the moment of the first breakthrough. We

recall from the previous section that ∂ωt

∂wt
< 1. By feasibility, we have that wt ≥ (1−e−r(T−t))s.

In order to analyze this question, we first have to consider the agent’s best response to a

given incentive scheme (ht, wt)0≤t≤T .

While the literature on experimentation in bandits would typically use dynamic pro-

gramming techniques, this would not be expedient here, as an agent’s optimal strategy will

depend not only on his current belief and the current incentives he is facing but also on

the entire path of future incentives. To the extent we do not want to impose any ex ante

monotonicity constraints on the incentive scheme, today’s scheme need not be a perfect pre-

dictor for the future path of incentives; therefore, even a three-dimensional state variable

(pt, ht, wt) would be inadequate. Thus, I shall be using the Pontryagin approach of Optimal

Control.

The Agent’s Problem

Agent’s controls are k0,t, k1,t; the state variable is pt, which evolves according to ṗt =

−λ1k1,tpt(1− pt) (co-state µt).

The agent maximizes

∫ T

0

{
re−rt−λ1

∫ t
0 pτ k1,τ dτ−λ0

∫ t
0 k0,τ dτ [(1− k0,t − k1,t)s + k0,tλ0(ht + ωt(pt)) + k1,tλ1pt(ht + wt)]

}
dt.

The appertaining Hamiltonian is given by

Ht = re−rt−λ1

∫ t
0 pτ k1,τ dτ−λ0

∫ t
0 k0,τ dτ [(1− k0,t − k1,t)s + k0,tλ0 (ht + ωt(pt)) + k1,tλ1pt(ht + wt)]

− µtλ1pt(1− pt)k1,t

s.t. k0,t + k1,t ≤ 1. From this we get that

µ̇t = λ1k1,tµt(1− 2pt)− re−rt−λ1

∫ t
0 pτ k1,τ dτ−λ0

∫ t
0 k0,τ dτ [k1,tλ1(ht + wt) + k0,tλ0ω

′
t(pt)]

and that k1,t = 1 is a best response if, and only if,

re−rt−λ1

∫ t
0 pτ k1,τ dτ−λ0

∫ t
0 k0,τ dτ [λ1pt(ht + wt)− s]− µtλ1pt(1− pt)

≥ max
{

0, re−rt−λ1

∫ t
0 pτ k1,τ dτ−λ0

∫ t
0 k0,τ dτ [−s + λ0(ht + ωt)]

}
.
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From the transversality condition, we get µT ≥ 0. {µt}0≤t≤T captures the evolution of

the opportunity cost of forgone future continuation values in case of a breakthrough today.

Clearly, this opportunity cost cannot be negative at the very end of the interaction.

Moreover, the principal will clearly never give strict incentives to use arm 1 in equilib-

rium, because if he was he could always lower his wage costs and still be providing adequate

incentives. Thus, the incentive constraint will bind in equilibrium, and the agent will be just

indifferent between doing the right thing and his next best option.

The Principal’s Problem

Now, we turn to the principal’s problem, who will take the agent’s incentive constraint into

account when designing his incentive scheme to with a view toward implementing k1,t = 1

for all t ∈ [0, T ]. The principal’s controls are wt and ht; the state variable is µt , i.e. the

co-state variable from the agent’s problem, which evolves according to

µ̇t = −λ1

[
re−rt−λ1

∫ t
0 pτ dτ (ht + wt)− µt(1− 2pt)

]
.

To µt I assign the co-state variable νt. Moreover, for each t, there is a Lagrangian

constraint (co-state ζt)

re−rt−λ1

∫ t
0 pτ dτ [λ1pt(ht + wt)− s]− µtλ1pt(1− pt)

≥ max
{

0, re−rt−λ1

∫ t
0 pτ dτ [−s + λ0(ht + ωt)]

}
,

which, as we have argued, will bind in equilibrium, as well as the constraints ht ≥ 0 and

wt ≥ s(1− e−r(T−t)). The Hamiltonian is

Ht = −re−rt−λ1

∫ t
0 pτ dτptλ1(ht + wt)− νtλ1[re

−rt−λ1

∫ t
0 pτ dτ (ht + wt)− µt(1− 2pt)]

− ζt[−re−rt−λ1

∫ t
0 pτ dτptλ1(ht + wt) + re−rt−λ1

∫ t
0 pτ dτs + µtλ1pt(1− pt)

+ max{0, re−rt−λ1

∫ t
0 pτ dτ [−s + λ0(ht + ωt)]}].

By mere inspection, we see that it is less costly to give incentives through wt than

through ht. Therefore, the principal will set ht = 0, and wt such that the incentive constraint

will just bind. This proves the following result:

Proposition 5.1 Even though the principal only cares about the first breakthrough, he opti-

mally gives incentives exclusively by committing to pay for later breakthroughs (and does not

reward the first breakthrough at all), i.e. ht = 0 and wt = µt(1−pt)

re−rt−λ1
∫ t
0 pτ dτ

+ max{s,λ0ωt(pt)}
λ1pt

.
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The intuition for the result is that by paying for later breakthroughs, the principal is in

a position to discriminate between honest agents, who achieved their breakthrough on arm

1, and those who cheated and achieved their breakthrough on arm 0. Agents’ anticipation

of eventually being found out in turn provides them with adequate incentives to ensure that

they will use arm 1 throughout. At each point in time, the agent’s promised continuation

value has to compensate him for his next best outside option, as well as for the forgone

option value of having a later first breakthrough in case of a breakthrough today.

6 Conclusion

The present paper introduces the question of optimal incentive design into a dynamic single-

agent model of experimentation on bandits. I have shown that even though the principal

only cares about the first breakthrough, he only rewards later ones. In doing so, he makes

sure that off-equilibrium agents either always play safe or exactly imitate the on-equilibrium

agent’s actions. This can be achieved by making the rewards increasing in the time of second

breakthrough.

The present paper only investigates the case of a single agent. It would be interesting to

explore how the structure of the optimal incentive scheme would change if several agents were

working for the same principal. Furthermore, while my investigation assumes an exogenous

end date T , endogenizing the optimal stopping date would make for an interesting extension.

I intend to explore these questions in future work.
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