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Abstract

Two players prepare their actions before they play a normal-form coordination

game at a predetermined deadline. In the preparation stage, each player stochastically

obtains opportunities to revise their actions, and finally-revised action is played at the

deadline. We show that, (i) A strictly Pareto-dominant Nash equilibrium, if there exists

one, is the only equilibrium in the dynamic game; and (ii) in ”battle of the sexes” games,

(ii-a) the equilibrium payoff set is a full-dimensional subset of the feasible payoff set

under perfectly symmetric payoff structure, but (ii-b) a unique equilibrium is selected

with asymmetric payoff structure.
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1 Introduction

Many “once in a life time” problems involve coordination with other people. To name a few

examples, two firms may need to decide which firm will conduct a particular task with very

high fixed costs; A husband and a wife may want to choose their jobs at the same location;

two researchers may want to decide which project to work on next, and so forth.

In such situations, that is, if the game is a high-stake event, it is often natural that

players prepare their actions before the game is actually played, either because playing the

game physically requires some preparation or because people would think about the game

harder than about low-stake events.

The present paper models such situations. A two-player 2 x 2 game is played once and

for all at a predetermined deadline, before which players have opportunities to revise their

actions. These opportunities arrive stochastically and independently among both players.

The stochastic component of the game reflects the fact that a game is typically not the only

thing that players face. A player’s hand may be tied for a while because she is playing

another game. For example, a firm may be engaged in several tasks, and an employee in

the firm may need to work for some other task, the necessary time for which is partially

determined by the weather situation. In this context, we show that, (i) if there exists a Nash

equilibrium that strictly Pareto-dominates all the other action profiles, then it is the only

equilibrium; and (ii) in “battle of the sexes” games in which Nash equilibria are not Pareto

ranked, (ii-a) while with perfectly symmetric payoff structure, the equilibrium payoff set is

a full-dimensional subset of the feasible payoff set, (ii-b) a slight asymmetry is enough to

select a unique equilibrium, which corresponds to the Nash equilibrium in the static game

that gives the highest payoff to the “strong” player.

To model the preparation of actions, we use the framework of a finite horizon version

of “revision games,” proposed by Kamada and Kandori (2009). In revision games, players

prepare their actions at opportunities in continuous time that arrive with a Poisson process

until a predetermined deadline. The actions that are prepared most recently at the deadline
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are played once and for all. They consider the limit that the length of the preparation stage

goes to infinity, so that there is enough number of opportunities by the deadline with a high

probability. This is equivalent to saying that they consider the limit that the arrival rate

becomes very high for a fixed length of preparation stage, that is, they consider the limit

that players can revise their actions very frequently. This assumption is also maintained in

the present paper. We also assume that the Poisson arrival of the revision opportunity is

independent among two players.

Kamada and Kandori (2009) show that, with certain conditions such as continuous strat-

egy space, non-Nash “cooperative” action profiles can be played at the deadline. As they

have shown, this result would not be possible with a finite game with a unique pure Nash

equilibrium.1 Hence their focus is on expanding the set of equilibria when the static Nash

equilibrium is inefficient relative to non-Nash profiles. We ask a very different question in

this paper: we consider games with multiple efficient Nash equilibria, and ask which of these

equilibria is selected.2

In the context of revision games with finite strategy sets, Kamada and Sugaya (2010)

consider a model of election campaign with three possible actions (Left, Right, and Am-

biguous). The main difference from their work is that they assume that once a candidate

decides which of Left and Right to take, she cannot move away from that action. Thus the

characterization of the equilibrium is substantially more difficult in the model of the present

paper, because in our model an action a player has escaped from can be taken again by that

player in the future.

The rough intuition for our results is as follows: First, consider a game with strictly

Pareto-dominant Nash equilibrium. Firstly, we show that once both players prepare the

strictly Pareto-dominant Nash equilibrium strategy, they will not escape from that state.

Expecting that, if a unilateral change of the preparation by player i can induce the strictly

1The possibility of cooperation in finite horizon in Kamada and Kandori (2009) is closely related to that
of finitely repeated games with multiple Nash equilibria (Benoit and Krishna, 1985).

2See also Ambrus and Lu (2009) for a variant of revision games model of bargainig in which the game
ends when an offer is accepted.
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Pareto-dominant Nash equilibrium, she will do so. In turn, player j whose unilateral change

in the preparation can induce the situation where player i’s unilateral change can induce the

strictly Pareto-dominant Nash equilibrium, she will also do so if the deadline is far expecting

that player i will go to strictly Pareto dominant Nash equilibrium.3

Second, consider the “battle of the sexes” game with symmetric payoffs. We prove that

there are, in particular, three types of equilibria: The first one is such that the process sticks

to the Nash profile that player 1 prefers, from the beggining until the end of the game. The

second one is such that the process sticks to the Nash profile that player 2 prefers, again

from the beggining until the end of the game. The most important is the third one, in which

the process starts at an inefficient non-Nash profile that would give a player the best payoff

if the opponent switches to another action. In this equilibrium, there is a “cutoff” time such

that if a player obtains an opportunity after this cutoff while the opponent still sticks to

the inefficient action, the player switches her action. Once the action profile reaches a Nash

equilibrium, players will stick to that profile. Notice that, because of the symmetry of the

payoff structure, two players’ cutoffs must be the same, and the indifference condition at the

cutoff implies that each player expects their respective “worse” Nash equilibrium payoff in

this equilibrium.4 We can then show that all the equilibrium payoff set is such that at each

point in the set, at least one player gets the payoff of 1. Hence, the equilibrium payoff set is

a full-dimensional subset of the feasible payoff set.

Finally, consider the “battle of the sexes” game with asymmetric payoffs. We prove

that the only equilibrium payoff is the one that corresponds to the Nash equilibrium that

the “strong” player (player 1) prefers, where by the “strong” player we mean the one who

expects more in his preferred Nash equilibrium than the opponent (player 2) does in the

3Similar results are obtained in the literature. See Farrell and Saloner (1985) and Dutta (2003) for early
works on this topic. Takahashi (2005) proves these results in a very general context.

4The intution is similar to the one of the “war of attrition.” The war of attrition is analyzed in Abreu
and Gul (2000) and Abreu and Pearce (2000). They consider the war of attrition problem in the context of
bargaining. They show that if there is an “irrational type” with a positive probability, then the agreement
delays in equilibrium because rational players try to imitate the irrational types. Players give in at the point
where imitation is no longer profitable. Although the war of attrition is a common feature, the focus of their
work and ours is quite different.
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other pure Nash equilibrium. The reason is simple. Consider the “chicken race equilibrium,”

the third type of the equilibrium discussed in the case of the symmetric “battle of the sexes”

game. Because we have asymmetry of payoffs now, the cutoffs of two players must differ.

In particular, the strong player has to have a cutoff closer to the deadline than that of the

weak player. This implies that, in the chicken race equilibrium, if it exists, the strong player

expects strictly more than his “worse” Nash equilibrium payoff, while the weak player expects

stricly less than her “worse” Nash equilibrium payoff. Hence, the strong player would not

want to stick to the “worse” Nash equilibrium, which rules out the possibility of the second

type of equilibrium in the symmetric case. Also, the weak player would not want to stick to

the chicken race equilibrium, which rules out the third type of equilibrium in the symmetric

case. Therefore the only possibility is the first type of equilibrium. Thus a unique profile is

selected.

Our results crucially hinges on asynchronicity of the revision process. If the revision

process were synchronous, the very same indeterminancy among multiple strict Nash equi-

libria would be present. The result that asynchronous moves select an equilibrium is not

new, but the cases in which the asynchronous moves result in equilibrium selection is very

limited. Lagunoff and Matsui (1997) show that in pure coordination games (games in which

all players’ payoff functions are the same) the Pareto efficient outcome is chosen, while Yoon

(2001) shows that this result is nongeneric.5 Our results, although in a bit different context

in which the game is played only once at a deadline, show that the payoff structure can be

anything in order to obtain the best outcome as a unique equilibrium.6,7

Let us compare our work with the large literature on equilibrium selection. The key

5Lagunoff and Matsui (2001) argue that this nongenericity result curucially depends on the order of the
limits with respect to the discount factor and the purity of coordination.

6For asynchronicity with respect to the timing of signals in imperfect monitoring setting, see Fudenberg
and Olszewski (2009).

7Caruana and Einav (2008) consider a similar setting as ours, with finite horizon and asynchronous moves,
and show that the equilibrium in generic 2 x 2 game there is a unique equilibrium, irrespective of the order
and timing of moves and the specification of the protocol. They assume that players incur a cost whenever
they revise their actions, which substantially simplify their problem. In particular, on the equilibrium path,
each player revises their actions at most once.
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difference between our work and the past works in the literature is that, we consider a

different class of situations than the ones considered in the literature. Specifically, four

features distinguish our model from the existing literature on equilibrium selection. That is,

we assume that (i) players are rational, (ii) they are nonanonymous, (iii) the structure of the

game is common knowledge, and (iv) the game is played once and for all. Let us overview

the related literature below: All of these four features seem to be present in the high-stake

game examples mentioned in the very first paragraph of this Introdction.

Kandori, Mailath, and Rob (1993) and Young (1993) consider an evolutionary learning

model in which players interact repeatedly, and each player’s action at each period is stochas-

tically perturbed. The key difference between their assumptions and ours is that in their

model players are assumed to be boundedly rational –players are assumed to play myopically

in repeated interactions, following a rule-of-thumbs type of decision rule, while we assume

completely rational players. In addition, the game is repeated infinitely in their models,

while the game is played once and for all in our model.

An evolutionary model called “perfect foresight dynamics” drops the bounded rationality

assumption. Matsui and Matsuyama (1994) and Oyama, Takahashi, and Hofbauer (2008)

consider a model in which patient players take into account the future path of the population

dynamics. The key assumption to select an equilibrium is that there is a population of agents

who are randomly and anonymously matched over time. In our model, on the other hand,

fixed two players play a finite horizon revision game.

Global games are another successful way to select an equilibrium. Rubinstein (1981),

Carlsson and van Damme (1993), Morris and Shin (1998), Sugaya and Takahashi (2009)

show that non-existence of almost common knowledge due to the incomplete information

can select an equilibrium. Without almost common knowledge, it is possible that a player

thinks that his opponent thinks that the player thinks ... that the game is very different

from the one that the player believes, which is the key to rule out risk-dominated equilibria.

Thus, in particular, it is impossible to have a common knowledge that the game is in a small
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open neighborhood of some a priori specified one.

Lipman and Wang (2000) consider a finite horizon repeated games with small switching

costs, in which the per-period length (henth the per-period payoff) is very small relative

to the costs. They too use backward induction argument to select a unique equilibrium in

games that we consider in the present paper. However, there are three important differences.

First, as the frequency of revision increases, it is potentially possible in our model that

players change their actions very often, while in Lipman and Wang (2000), the switching

cost essentially precludes this possibility. Second, the game is repeatedly played in their

model, while it is played only once at the deadline in our model. Hence, in particular, their

model cannot have “chicken race equilibrium” type of strategies in equilibrium. Third, in

their model, the prediction of the game is not robust to affine transformation of payoffs.8

Hence, in some payoff specifications, their selection matches ours, while in other cases it

does not. The reason for this scale-dependence is that the switching cost is directly payoff-

relevant. In our case, detailed specifications of the preparation stage (such as the arrival

rate) is not directly payoff-relevant, so our result is robust to the affine transformation of

the payoffs.

All of these four lines of the literature result in a selection of risk-dominant equilibrium

of Harsanyi and Selten (1988) in 2 x 2 games.9 In our model, however, a different answer is

obtained: a Pareto-dominant strict Nash equilibrium is played even if it is risk-dominated.

Roughly speaking, since we assume complete information with nonanonymous players, there

is no “risk” of mis-coordination, which ensures that rational players select a Pareto-dominant

equilibrium.

8This nonrobustness is fine for their purpose since they focus on pointing out that the set of outcomes
discoutinuously changes by the introdction of a small switching cost. However, it would not be very ideal in
our context because we focus on identifying which outcome is selected by the introduction of the preparation
stage. For that purpose, we want to minimize the information necessary for the selection: the preference
of each player is sufficient information to identify the outcome and the information to compare different
players’ payoffs is not necessary.

9As an exception, Young (1998) shows that in the context of contracting, his evolutionary model does not
necessarily lead to risk-dominant equilibrium (p-dominant equilibrium in Morris, Rob and Shin (1995)). But
he considers a large anonymous population of players and repeated interaction, so the context he focuses on
is very different from the one we focus on.
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2 Model

We consider 2 x 2 normal-form games, i.e., games with two players and two pure actions for

each player. The game π is described as follows:

L R

U π1(U,L), π2(U,L) π1(U,R), π2(U,R)

D π1(U,D), π2(U,D) π1(D,R), π2(D,R)

Before players actually take actions, they need to “prepare” their actions. We model

this situation as in Kamada and Kandori (2009): time is continuous, −t ∈ [−T, 0] with

T = 1, and the normal form game (referred to as a “component game”) is played once

and for all at time 0. The game proceeds as follows. First, at time −t = −1, two players

simultaneously choose actions. Between time −T = −1 and 0, each player independently

obtains opportunities to revise their prepared action according to a Poisson process with

arrival rate λ. At t = 0, the action profile that has been prepared most recently by each

player is actually taken and each player receives the payoff that corresponds to the payoff

specification of the component game. Each player has perfect informaion about past events

at any moment of time. No discounting is assumed, although this assumption does not

change any of our results.10

We consider the limit of the set of subgame-perfect equilibrium payoffs of this game as

the arrival rate λ goes to infinity.

Let φλ(π) be the set of subgame-perfect equilibrium payoffs given arrival rate λ.

Definition 1. A payoff set S ⊂ R is a revision equilibrium payoff set of π if S =

φ(π) := limλ→∞ φλ(π). If φ(π) is a singleton, we say its element is a revision equilibrium

payoff. The set of action profiles that correpond to the revision equilibrium payoff set is a

revision equilibrium set. If the revision equilibrium set is a singlton, we say its element

10Discounting only scales down the payoff at time 0.
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is a revision equilibrium.

That is, a revision equilibrium payoff set is the set of payoffs achievable by the revision

game defined in this section. It will turn out in the sequel that this set is often a singleton.

The term “revision equilibrium payoff” is used for a convenient abbreviation that represents

the element of such a singleton set. “Revision equilibrium set” and “revision equilibrium”

are analogously defined.

Note well that whenever we refer to some action profile (resp. a payoff profile) as a

revision equilibrium (resp. a revision equilimrium payoff), we implicitly mean that it is the

unique element of the revision equilibrium set (resp. revision equilibrium payoff set).

3 Pareto-Dominant Strict Nash Equilibrium in a Com-

ponent Game

In this section we consider a component game with a Nash equilibrium that Pareto-dominates

all other action profiles. Note that this condition is stronger than Pareto-ranked Nash

equilibria. We will show that this strategy profile is selected in our model.

Proposition 1. Suppose that πi(U,L) > πi(U,R), πi(D,L), πi(D,R) for each i = 1, 2. Then,

(U,L) is a unique revision equilibrium.

This result is actually more general beyond the finite component games: In the Appendix,

we prove this result in terms of an arbitrary strategy set Xi for each player i, as opposed to

assuming only 2 actions for each player.

Let us sketch the proof method. Since fixing T and letting λ converge to infinity is

equivalent to fixing λ and letting T converge to infinity, we consider the latter formulation

for the sake of “backward induction.” First we show that once the action profile reaches the

Pareto-dominant profile, then the action profile cannot escape from it from then on. To

show this, we make a backward induction argument: At period −δ with sufficiently small
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δ > 0, no player can gain by deviating from the profile because the physically possible payoff

change during the time between period −δ and 0 is very close to zero. Knowing this, at

period −2δ, no player would deviate from the profile. And so on. Finally, knowing that the

profile is an absorbing state, players would want to go to this profile if there is left much

time to revise the actions, because the profile is better than any other profile for each player.

Knowing this, each player expects that at time −T the opponent plays only that profile.

Notice that the above equilibrium selection always selects the Pareto-dominant equi-

librium in finite component games. In particular, even if the better Nash equilibrium is

risk-dominated by a worse Nash equilibrium, the asynchronous revision process leads to a

better equilibrium. The key is that, if the remaining time is sufficiently long, since it is

almost common knowledge that the opponent will move to the Pareto-dominant equilibrium

afterwards, the risk of mis-coordination can be arbitrarily small.

Notice also that we do not require that the game is of “pure-coordination,” in which all

players’ payoff functions are the same. This result is in a stark difference from Lagunoff

and Matsui (1997), in which they need to require that the game is of pure coordination, as

otherwise their result would not hold (Yoon, 2001).

4 Pareto-Unranked Nash Equilibria in a Component

Game: Battle of the Sexes

The result in the previous section suggests that the Pareto-dominant equilibrium is selected

in games in which such a profile exists. But what happens if there are mutiple Pareto-optimal

Nash equilibria? In this section we consider the game of “battle of the sexes,” as follows:

g(ε) =

L R

U a + ε, 1 0, 0

D 0, 0 1, a

,
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with a > 1 and ε ≥ 0. Observe that there are two pure strategy Nash equilibrium, (U,L)

and (D,R), where player 1 prefers the former equilibrium while player 2 prefers the latter.

If ε = 0, then two players are perfectly symmetric. Then it is obvious that the set of

equilibrium payoff is symmetric. In Subsection 4.1, we show that this set is a full-dimensional

subset of the feasible payoff set. This set for the case with a = 2 is depicted in Figure 1.11

However, if ε is strictly positive, then what would happen is no longer obvious. We show in

Subsection 4.2 that (U,L), which corresponds to the payoff (a+ε, 1), is a revision equilibrium.

The revision equilibrium payoff in this case with a = 2 is depicted in Figure 2.

4.1 Anti-Equilibrium Selection in Symmetric Battle of the Sexes

Game

In this subsection we analyze the case with ε = 0.

Proposition 2. Suppose that ε = 0 in game g. Then, the revision equilibrium payoff set is

φ(g(0)) = {(y1, y2) ∈ [1, a]2 |y1 + y2 ≤ a + 1}.

Figure 1 depicts the set φ(g(0)), for the case of a = 2. Let us first discuss how to obtain

the extreme points of the sets, assuming a = 2 for the sake of concreteness. First, point

(2, 1) can be obtained by just sticking to (U,L) on the path of the play. In a perfectly

symmetric way, (1, 2) can be obtained by just sticking to (D,R) on the path of the play. To

obtain the payoff profile (1, 1), we construct an equilibrium as follows: When t > t∗ for some

appropriately chosen t∗, players 1 and 2 stick to U and R, respectively. For time t < t∗,

if a player gets an opportunity, he gives up and change his action (to D if player 1 gives

up and to R if player 2 gives up). From now on we refer to this equilibrium by “chicken

race equilibrium,” as the equilibrium has a favor of the “chicken race” game,” in which two

drivers drive their cars towards each other until one of them gives in, while if both do not give

in then the cars crash and the drivers die. Two features of this equilibrium are important:

11All figures are placed at the end of this paper.
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First, because two players are symmetric, their “cutoffs,” t∗, must be the same. Second, at

this t∗, they are indifferent between sticking to the current action and changing it, which

gives him the payoff of 1. Hence in this equilibrium each player expects the payoff of 1. This

is why the payoff profile (1, 1) can be obtained.

Now we explain how to obtain the payoffs other than the extreme points of the equilibrium

payoff set defined in Proposition 2. Because we are not assuming any public randomization

device, it is not immediately obvious that these payoffs can be achieved. However, we can

use the Poisson arrivals when t is large as if it were a public randomization device: players

start their play at (U,R), and “count” the numbers of Poisson arrivals to each player and

then decide which of three equilibria to play. Since the length of the time interval during

which players count the arrivals can be arbitrary rational and irrational numbers, we can

sustain all the payoffs in the equilibrium payoff set defined in Proposition 2.

4.2 Equilibrium Selection in Asymmetric Battle of the Sexes Game

In this subsection we consider the case with ε > 0.

Proposition 3. Suppose that ε > 0 in game g. Then, (U,L) is a unique revision equilibrium.

The proposition says that the revision equilibrium payoff set in asymmetric battle of the

sexes is a singleton. Figure 2 depicts the revision equilibrium payoff, for the case of a = 2.

The intuition is as follows: First consider the symmetric case analyzed in the previous

subsection. As noted, the cutoffs of the two players in the chicken race equilibrium are the

same in this case. Now make ε strictly positive. Since player 1 becomes more patient than

player 2 because player 1 expects more by player 2’s giving up than player 2 does by player

1’s giving up. This implies that the cutoffs are no longer the same. Specifically, player 1’s

cutoff needs to be closer to the deadline than player 2’s cutoff does. But then, player 1

expects the payoff strictly more than 1 at the profile (U,R) when t is large, while player 2

expects strictly less than 1. This in particular has two implications: First, player 1 would
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be better off by deviating from the profile (D,R) when t is large. Second, player 2 would be

better off by deviating from the profile (U,R) even when t is large. Hence the process must

settle into the profile (U,L). There is more complication that arise when t is large, but the

basic intuition for the result is as above.12

5 Concluding Remarks

We analyzed the situation in which two players prepare their actions before they play a

normal-form coordination game at a predetermined date. In the preparation stage, each

player stochastically obtains opportunities to revise their actions, and finally-revised action

is played at the deadline. We showed that, (i) If there exists a Nash equilibrium that strictly

Pareto-dominates all the other action profiles, then it is the only equilibrium; and (ii) in

“battle of the sexes” games in which Nash equilibria are not Pareto ranked, (ii-a) while with

perfectly symmetric payoff structure, the equilibrium set is a full-dimensional subset of the

feasible payoff set, (ii-b) a slight asymmetry is enough to select a unique equilibrium, which

corresponds to the Nash equilibrium in the static game that gives the highest payoff to the

“strong” player.

Let us mention possible diections of future research. First, our analysis has been re-

striced to 2 x 2 games, but the basic intuition seems to extend to more general cases.13

Second, it would be interesting to consider the case in which there exists only one mixed

equilibrium. For example, in a symmetric “matching pennies” game, it is obvious that the

probability distribution over the outcome is the same as in the mixed strategy equilibrium

of the component game. A question is whether this is true for asymmetric case. Third, it

would be interesting to see the hybrid version of synchronized and asynchronized revision

games. These possibilities are out of the scope of this paper, but we believe that the present

paper laid out motivations that are enough to pursue these generalizations.

12If t is large, player 2 would want to deviate from (D,R) to (D,L, ).
13We actually have not characterized equilibria for all payoff structure in 2 x 2 games. We are currently

working on this, and we will include results for other class of 2 x 2 games in a revised version of this paper.
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A Appendix: Proof of Propositions

Since fixing T and letting λ converge to infinity is equivalent to fixing λ and letting T

converge to infinity, we consider the latter formulation for the sake of “backward induction.”

We focus on right-continuous strategy. The following notations are useful: let σ be a strategy

in the revision game. As we will see, σ only depends on the calendar time t and the action

profile most recently prepared by the player. Therefore, letting xi be the action most recently

prepared by player i at t, we can write σt
i(x) ∈ Ai.

14 Finally, let BRi(x−i) be a static best

response to x−i by player i in the component game.

A.1 Proof of Proposition 4

We prove the result in much more general context. Consider a 2-player normal-form game

π = (π1, π2) with strategy set Xi for each player i.

First we define a terminology needed to state the result:

Definition 2. A strategy profile x∗ is said to be strongly strictly Pareto -dominant

strategy profile if there exists ε > 0 such that for all i and all x ∈ X1 × X2 with x 6= x∗,

πi(x
∗
i ) > πi(x) + ε.

Notice that in the above definition, the starategy sets can be either finite or infinite. In

the case of finite strategy sets, the definition reduces to the standard definition of the game

with strictly Pareto-dominant strategies.

We can prove the following result:

Proposition 4. Suppose that x∗ is strongly strictly Pareto-dominant strategy profile and

inf πi =: πi > −∞. Then, x∗ is a unique revision equilibrium.

Proof. To prove this result, we first verify that the following lemma holds:

14We can concentrate on the pure strategies without loss of generality.
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Lemma 1. Suppose that x∗ is strongly strictly Pareto-dominant strategy profile and inf πi =:

πi > −∞. Then if a subgame starts with a profile x∗, there is a unique subgame perfect

equilibrium in that subgame and this equilibrium designates actions x∗
i for each i on the

equilibrium path of the play.

Proof of Lemma 1. Let π be a game with strongly strictly Pareto efficient strategies. Let

the Pareto-dominant action profile in the component game be (x∗
1, x

∗
2). Take an arbitrary

ε > 0 such that for all i and all x ∈ X1 × X2 with x 6= x∗, πi(x
∗
i ) > πi(x) + ε.

The lower bound of the payoff from taking action x∗
i at time δi > 0 given the opponent’s

current action x∗
−i is

e−nλδiπi(x
∗) + (1 − e−nλδi)πi,

where πi = inf πi. The upper bound of the payoff from taking action x̂i 6= x∗
i at time δi > 0

given the opponent’s current action x∗
−i is

e−nλδiπi(x̂i, x
∗
−i) + (1 − e−nλδi)π(x∗).

Hence taking x∗
i is strictly better at time δi conditional on any history if

e−nλδiπi(x
∗) + (1 − e−nλδi)πi > e−nλδiπi(x̂i, x

∗
−i) + (1 − e−nλδi)π(x∗)

⇐⇒ e−nλδi
[
πi(x

∗) − πi(x̂i, x
∗
−i)

]
> (1 − e−nλδi) [π(x∗) − πi] .

⇐= ε >

(
1

e−nλδi
− 1

)
[π(x∗) − πi] .

⇐⇒ δi <
1

nλ
ln

(
ε

π(x∗) − πi

+ 1

)
.

Notice that the right hand side is strictly positive.

Let

δ∗ = min
i∈I

{
1

nλ
ln

(
ε

π(x∗) − πi

+ 1

)}
,
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where I = {1, 2}. Notice that δ∗ is strictly positive. Also notice that for all t ∈ [0, δ∗), each

player i chooses x∗
i at t conditional on the opponent’s current action x∗

−i.

Now we make a backward induction argument. Suppose that for all time t ∈ [0, kδ∗),

each player i chooses x∗
i at t conditional on the opponent’s current action x∗

−i. We show that

for all time t′ ∈ [kδ∗, (k + 1)δ∗), each player i chooses x∗
i at t′ conditional on the opponent’s

current action x∗
−i.

The lower bound of the payoff from taking action x∗
i at time kδ∗ + δ′i with δ′i > 0 is

e−nλδ′iπi(x
∗) + (1 − e−nλδ′i)πi.

The upper bound of the payoff from taking action x̂i 6= x∗
i at time δ′i > 0 is

e−nλδ′iπi(x̂i, x
∗
−i) + (1 − e−nλδ′i)π(x∗).

Hence taking x∗
i is strictly better at time δ′i conditional on the opponent’s current action x∗

−i

if

e−nλδ′iπi(x
∗) + (1 − e−nλδ′i)πi > e−nλδ′iπi(x̂i, x

∗
−i) + (1 − e−nλδ′i)π(x∗)

⇐= δ′i <
1

nλ
ln

(
ε

π(x∗) − πi

+ 1

)
.

Thus each player i strictly prefers playing x∗
i at all time t′ ∈ [kδ∗, kδ∗+mini∈I

{
1
λ

ln
(

ε
π̄i−πi

+ 1
)}

) =

[kδ∗, (k+1)δ∗) conditional on the opponent’s current action x∗
−i. Since we have already proven

that each player i plays x∗
i at all time t ∈ [0, δ∗) conditional on the opponent’s current action

x∗
−i, the backward induction argument is complete. This completes the proof.

Now we prove the proposition. Take any ξ > 0. At the state x where player −i’s move

can induce x∗, player i’s possible deviation is to wait forever. Also, at state x where xj 6= x∗
j

for each j, player i’s possible deviation is to take x∗
i and stick to it forever. Then, player −i

moves to x∗ whenever she can move and stays at x∗ if player −i takes an equilibrium strategy

by Lemma 1, which gives him more than πi(x
∗) − ξ if t is sufficiently large. Therefore, on
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the equilibrium, the value at x is more than πi(x
∗) − ξ. Then, by feasibility, since π(x∗) is

strongly strictly Pareto efficient, player −i’s value at x is also close to π−i(x
∗), which proves

the proposition.

A.2 Proof of Proposition 2

Firstly, we prove the existence of an equilibrium with expected payoff (1, 1) by construction:

let t∗ be the solution for

1 =
1 − exp(−2λt∗)

2
(a + 1). (1)

Note that at t∗, staying at (U,R) gives 1 to both players the payoff of 1, given that for

t ∈ [t∗, 0], σt
i(x) = BRi(x). We verify that the following strategy profile constitutes an

equilibrium:

• Player 1 takes U at −T .

• Player 2 takes R at −T .

• Player 1 takes the following Markov strategy:

– For t ∈ (t∗, T ), σt
1(U,R) = σt

1(D,R) = U and σt
1(U,L) = σt

1(D,L) = U .

– For t ∈ [t∗, 0], σt
1(x) = BR1(x).

• Player 2 takes the following Markov strategy:

– For t ∈ (t∗, T ), σt
2(U,L) = σt

2(U,R) = R and σt
2(D,L) = σt

2(D,R) = R.

– For t ∈ [t∗, 0], σt
2(x) = BR2(x).

Note that at (U,R) and (D,R) at −t with t ≥ t∗, (1) ensures that the expected payoff

for player 1 is 1. Similarly, at (U,L) and (U,R) at −t with t ≥ t∗, the expected payoff for

player 2 is 1. Therefore,
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• At −T , given player 2 takes R, both U and D are optimal.

• At −T , given player 1 takes U , both L and R are indifferent.

• For t ∈ (t∗, T ), at (U,R) and (D,R), both U and D are optimal. At (U,L) and (D,L),

U is strictly optimal.

• For t ∈ (t∗, T ), at (U,L) and (U,R), both L and R are optimal. At (D,L) and (D,R),

R is strictly optimal.

• For t ∈ [t∗, 0], σt
i(x) = BRi(x) is optimal.

Secondly, we prove the existence of an equilibrium with expected payoff close to (a, 1)

by construction. Let T̄ > 0 be a large number. We verify that the following strategy profile

constitutes an equilibrium:

• Player 1 takes U at −T .

• Player 2 takes R at −T .

• Player 1 takes the following Markov strategy:

– for t ∈ (t∗, T ), σt
1(U,R) = σt

1(D,R) = U and σt
1(U,L) = σt

1(D,L) = U .

– for t ∈ [t∗, 0], σt
1(x) = BR1(x).

• Player 2 takes the following Markov strategy:

– for t ∈
(
T̄ , T

)
, σt

2(U,L) = σt
2(U,R) = R and σt

2(D,L) = σt
2(D,R) = R.

– for t ∈ [T̄ , 0], σt
2(x) = BR2(x).

Note that for sufficiently large T̄ , the expected payoff is sufficiently close to (a, 1). We

verify that the above strategy profile constitutes an equilibrium: Note that at (U,R) and

(D,R) at −t with t ≥ t∗, T̄ > t∗ ensures that the expected payoff for player 1 is higher
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at (U,R). At (U,L) and (U,R) at −t with t ≥ t∗, the expected payoff for player 2 is 1.

Therefore,

• At −T , given player 2 takes R, both U and D are optimal.

• At −T , given player 1 takes U , both L and R are indifferent.

• For t ∈ (t∗, T ), at all x, U is strictly optimal.

• For t ∈ (t∗, T ), at (U,L) and (U,R), both L and R are optimal. At (D,L) and (D,R),

R is strictly optimal.

• For t ∈ [t∗, 0], each player i takes σt
i(x) = BRi(x).

Symmetrically, the following equilibrium approximates (1, a).

• Player 1 takes U at −T .

• Player 2 takes R at −T .

• Player 1 takes the following Markov strategy:

– For t ∈
(
T̄ , T

)
, σt

1(U,R) = σt
1(D,R) = U and σt

1(U,L) = σt
1(D,L) = U .

– For t ∈ [T̄ , 0], σt
1(x) = BR1(x).

• Player 2 takes the following Markov strategy:

– For t ∈ (t∗, T ), σt
2(U,L) = σt

1(U,R) = R and σt
1(D,L) = σt

1(D,R) = R.

– For t ∈ [t∗, 0], σt
2(x) = BR2(x).

Therefore, we construct equilibria approximating (1, 1), (a, 1), and (1, a). Note that the

three equilibrium, nobody moves until −T̄ and the following is also an equilibrium for any

N,M : with T ∗ > T̄ ,
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• Player 1 takes U at −T .

• Player 2 takes R at −T .

• Player 1 takes the following Markov strategy:

– For t ∈ (T ∗, T ), σt
1(U,R) = σt

1(D,R) = U and σt
1(U,L) = σt

1(D,L) = U .

– If the number of chances where player 1 can move for [−T,−T ∗] is less than N ,

going to the first equilibrium, that is,

∗ For t ∈ (t∗, T ∗), σt
1(U,R) = σt

1(D,R) = U and σt
1(U,L) = σt

1(D,L) = U .

∗ For t ∈ [t∗, 0], σt
1(x) = BR1(x).

– If the number of chances where player 1 can move for [−T,−T ∗] is no less than

N and no more than M , going to the second equilibrium, that is,

∗ For t ∈ (t∗, T ∗), σt
1(U,R) = σt

1(D,R) = U and σt
1(U,L) = σt

1(D,L) = U .

∗ For t ∈ [t∗, 0], σt
1(x) = BR1(x).

– If the number of chances where player 1 can move for [−T,−T ∗] is no mroe than

M , going to the third equilibrium, that is,

∗ For t ∈
(
T̄ , T ∗), σt

1(U,R) = σt
1(D,R) = U and σt

1(U,L) = σt
1(D,L) = U .

∗ For t ∈ [T̄ , 0], σt
1(x) = BR1(x).

• Player 2 takes the following Markov strategy:

– For t ∈ (T ∗, T ), σt
2(U,L) = σt

2(U,R) = R and σt
2(D,L) = σt

2(D,R) = R.

– If the number of chances where player 1 can move for [−T,−T ∗] is less than N ,

going to the first equilibrium, that is,

∗ For t ∈ (t∗, T ∗), σt
2(U,L) = σt

2(U,R) = R and σt
2(D,L) = σt

2(D,R) = R.

∗ For t ∈ [t∗, 0], σt
2(x) = BR2(x).
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– If the number of chances where player 1 can move for [−T,−T ∗] is no less than

N and no more than M , going to the second equilibrium, that is,

∗ For t ∈
(
T̄ , T ∗), σt

2(U,L) = σt
2(U,R) = R and σt

2(D,L) = σt
2(D,R) = R.

∗ For t ∈ [T̄ , 0], σt
2(x) = BR2(x)

– If the number of chances where player 1 can move for [−T,−T ∗] is no mroe than

M , going to the third equilibrium, that is,

∗ For t ∈ (t∗, T ∗), σt
2(U,L) = σt

2(U,R) = R and σt
2(D,L) = σt

2(D,R) = R.

∗ for t ∈ [t∗, 0], σt
2(x) = BR2(x).

It is straightforward to show that this is an equilibrium and with appropriate choices

of T ∗, N , M , and sufficiently large
∣∣T ∗ − T̄

∣∣, we can attain any payoff profile that can be

expressed by a convex combination of (1, 1), (a, 1), and (1, a).

A.3 Proof of Proposition 3

Proof. We use backward induction to derive the (essentially) unique subgame perfect equi-

librium. Let xt
i be the prepared action by player i at t. Firstly, note that there exists ∆ > 0

such that, for each t ∈ [0, ∆), given player −i’s prepared action xt
−i, player i prepares the

best response to xt
−i, that is,

σt(x
t
−i) = BR(xt

−i).

Suppose the players “know” the game proceeds as explained above after ∆. Then, at ∆,

• If x∆
2 = L, player 1 will take U if she can move.

• If x∆
2 = R, player 1 will take B if and only if

The payoff of taking B = 1

≥ 1 − exp(−2λ∆)

2
(a + ε + 1)

= The payoff of taking U .

23



Let t∗ be the solution for this problem: 1 − exp(−2λt∗) = 2
a+1+ε

.

• If x∆
1 = U , player 2 witll take L if and only if

The payoff of taking L = 1

≥ 1 − exp(−2λ∆)

2
(a + 1)

= The payoff of taking R.

• If x∆
1 = B, player 2 will take R.

Therefore, since 1−exp(−2λt∗)
2

(a + 1) < 1, we can see that there exist t∗ and T with 1 −

exp(−2λt∗) = 2
a+1+ε

such that

• From t ∈ (t∗, T ),

σt(x
t
1) = BR(xt

1)

and

σt(L) = U,

σt(R) = B,

• From t ∈ (0, t∗), for each i,

σt(x
t
−i) = BR(xt

−i).

Suppose the players “know” the game proceeds as follows after T . Then,

• If xT
2 = L, player 1 will take U if she can move.

• If xT
2 = R, player 1 will take B since 1−exp(−2λt)

2
is increasing in t.

24



• If x1 = U , player 2 will take L since

The payoff of taking L = 1

>
1 − exp(−2λt∗)

2
(a + 1)

= The payoff of taking R.

• If x1 = D, player 2 will take R if and only if

The payoff of taking R

: = V (T )

: =

Z T−t∗

0
λ exp(−λs)
| {z }

player 1 firstly moves by t∗

8

>

>

>

<

>

>

>

:

1 − exp
`

−λ
`

T − t
∗ − s

´´

| {z }

player 2 secondly moves by t∗

+ exp
`

−λ
`

T − t
∗ − s

´´

| {z }

player 2 does not move by t∗

1 − exp
`

−2λt∗
´

2
(a + 1)

9

>

>

>

=

>

>

>

;

ds

+ exp
`

−λ
`

T − t
∗´´

| {z }

player 1 does not move by t∗

a

≥
1 − exp(−2λT )

2
| {z }

player 1 firstly moves

+

Z T−t∗

0
exp(−λs)
| {z }

player 1 does not move by s

λ exp(−λs)
| {z }

player 2 moves at s

V (T − s)ds + exp(−2λ(T − t
∗
))

| {z }

nobody moves by t∗

1 − exp(−2λt∗)

2
a

= The payoff of taking L

Let T ∗ be the solution for the above indifference condition.

Note that

V (T ) =
∫ T−t∗

0
λ exp(−λs)

{
1 − exp (−λ (T − t∗ − s)) + exp (−λ (T − t∗ − s))

1 − exp (−2λt∗)
2

(a + 1)
}

ds

+exp (−λ (T − t∗)) a

=
∫ T−t∗

0
λ exp(−λs)

{
1 − exp (−λ (T − t∗ − s))

ε

a + 1 + ε

}
ds + exp (−λ (T − t∗)) a

= 1 − ε

a + 1 + ε
λ (T − t∗) exp (− (T − t∗)) + exp (−λ (T − t∗)) (a − 1)

λ exp (−2λs) V (T − s)

= λ exp (−2λs) − ε

a + 1 + ε
λ2 (T − s − t∗) exp (−λ (T + s − t∗)) + (a − 1) λ exp (−λ (T + s − t∗))
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[λ (T − s − t∗) exp (−λ (T + s − t∗))]′

= −λ exp (−λ (T + s − t∗)) − λ2 (T − s − t∗) exp (−λ (T + s − t∗))

∫ T−t∗

0

− ε

a + 1 + ε
λ2(T − s − t∗) exp(−λ (T + s − t∗))ds

=
ε

a + 1 + ε

{∫ T−t∗

0

λ exp (−λ (T + s − t∗)) ds + [λ (T − s − t∗) exp (−λ (T + s − t∗))]T−t∗

0

}
=

ε

a + 1 + ε
{exp (−λ (T − t∗)) − exp (−2λ (T − t∗)) − λ (T − t∗) exp (−λ (T − t∗))}

Hence,

The payoff of taking L

=
1 − exp(−2λT )

2
+

∫ T−t∗

0

λ exp(−2λs)V (T − s)ds + exp(−2λ(T − t∗))
1 − exp(−2λt∗)

2
a

=
1 − exp(−2λT )

2
+

1 − exp (−2λ (T − t∗))

2

+
ε

a + 1 + ε
{exp (−λ (T − t∗)) − exp (−2λ (T − t∗)) − λ (T − t∗) exp (−λ (T − t∗))}

+(a − 1)[exp (−λ (T − t∗)) − exp (−2λ (T − t∗))] + exp(−2λ(T − t∗))
1 − exp(−2λt∗)

2
a

Subtracting V (T ) yields

1 − exp(−2λT )

2
+

1 − exp (−2λ (T − t∗))

2

+
ε

a + 1 + ε
{exp (−λ (T − t∗)) − exp (−2λ (T − t∗)) − λ (T − t∗) exp (−λ (T − t∗))}

+ (a − 1) {exp (−λ (T − t∗)) − exp (−2λ (T − t∗))} + exp(−2λ(T − t∗))
1 − exp(−2λt∗)

2
a

−1 +
ε

a + 1 + ε
λ (T − t∗) exp (− (T − t∗)) − exp (−λ (T − t∗)) (a − 1)

= exp(−λT ){− (a + 1) exp(−λT ))

2
− (a − 1) exp(−λT + 2λt∗))

2

+
ε

a + 1 + ε
exp(λt∗) − ε

a + 1 + ε
exp(−λT + 2λt∗))}
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Note that the third term dominates when T is large.

Therefore, we have the following: suppose the players “know” the game proceeds as

follows after T ∗. Then, for T > T ∗,

• If xT
2 = L, player 1 will take U if she can move.

• If xT
1 = U , player 2 witll take L since

The payoff of taking L = 1

> 1 − exp(−λ(T − t∗)) + exp(−λ(T − t∗))
1 − exp(−2λt∗)

2
(a + 1)

= The payoff of taking R.

• If xT
1 = D, player 2 will take L

• If xT
2 = R, player 2 will take U .

The last line can be shown as follows. On the one hand,

The payoff of taking U = U(T )

: = (1 − exp(−λ(T − t∗)))(a + ε)

+ exp(−λ(T − t∗))
1 − exp(−2λt∗)

2
(a + 1 + ε)

= (1 − exp(−λ(T − t∗)))(a + ε) + exp(−λ(T − t∗))1

= (a + ε) − exp(−λ(T − t∗))(a − 1 + ε)

> 1.
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Note that U ′(T ) > 0. On the other hand, the payoff of taking D:

Z T−T∗

0
exp(−2λs)λ
| {z }

1 moves first
going to (U,R)

U(T − s)ds

+

Z T−T∗

0
exp(−2λs)λ
| {z }

2 moves first by T∗
going to (D,L)

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

`

1 − exp(−λ(T − T
∗ − s)

´

| {z }

1 moves by T∗
going to (U,L)

(a + ε)

+exp(−λ(T − T
∗ − s))

| {z }

1 does not move by T∗

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

1 − exp(−2λT∗)

2
(a + ε)

| {z }

1 moves first
going to (U,L)

+
R T∗−t∗
0 exp(−2λt)λ

| {z }

2 moves first by t∗
going to (D,R)

0

B

B

B

B

B

B

B

B

B

@

exp(−λ(T
∗ − t

∗ − t))
| {z }

nobody moves
staying at (D,R)

+
R T∗−t∗−t
0 e

−λτ
λ

| {z }

1 moves by t∗
going to (D,R)

U(T∗ − t − τ)dτ

1

C

C

C

C

C

C

C

C

C

A

dt

+ exp(−2λ(T
∗ − t

∗
))

| {z }

nobody moves from (D,L) until t∗

(1 − exp(−λt∗))

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

ds

+ exp(−2λ
`

T − T
∗´

)
| {z }

nobody moves until T∗
going to (D,R)

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

exp(−λ(T
∗ − t

∗
))

| {z }

nobody moves
staying at (D,R)

+
R T∗−t∗
0 exp(−λτ)λ

| {z }

1 moves by t∗
going to (D,R)

V (T∗ − τ)dτ

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

• The first term is

∫ T−T ∗

0

exp(−2λs)λU(T − s)ds

=

∫ T−T ∗

0

exp(−2λs)λ ((a + ε) − exp(−λ(T − s − t∗))(a − 1 + ε)) ds

= (a + ε)
1 − exp(−2λ (T − T ∗))

2

− (a − 1 + ε) (exp (−λ (T − t∗)) − exp(−λ (T − t∗ + T − T ∗)))
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• The second term is

Z T−T∗

0
exp(−2λs)λ

2

6

6

6

6

6

6

6

6

6

4

`

1 − exp(−λ(T − T∗ − s)
´

(a + ε)

+ exp(−λ(T − T∗ − s)

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

1−exp(−2λT∗)
2 (a + ε) + exp

`

−λ
`

T∗ − t∗
´´

− exp
`

−2λ
`

T∗ − t∗
´´

+ (a + ε)

„

1−exp(−2λ(T∗−t∗))
2 − exp

`

−λ
`

T∗ − t∗
´´

+ exp
`

−2λ
`

T∗ − t∗
´´

«

−
`

T∗ − t∗
´

λ exp
`

−λ
`

T∗ − t∗
´´

(a − 1 + ε) + exp
`

−λ
`

T∗ − t∗
´´ `

1 − exp
`

−λ
`

T∗ − t∗
´´´

(a − 1 + ε)

+ exp(−2λ(T∗ − t∗))(1 − exp(−λt∗))

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

3

7

7

7

7

7

7

7

7

7

5

ds

=

Z T−T∗

0

2

6

6

6

6

6

6

6

6

6

6

6

6

4

`

exp(−2λs)λ − exp(−λ(T − T∗ + s))λ
´

(a + ε)

+ exp(−λ(T − T∗ + s)

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

1−exp(−2λT∗)
2 (a + ε) + exp

`

−λ
`

T∗ − t∗
´´

− exp
`

−2λ
`

T∗ − t∗
´´

+ (a + ε)

„

1−exp(−2λ(T∗−t∗))
2 − exp

`

−λ
`

T∗ − t∗
´´

+ exp
`

−2λ
`

T∗ − t∗
´´

«

−
`

T∗ − t∗
´

λ exp
`

−λ
`

T∗ − t∗
´´

(a − 1 + ε)

+ exp
`

−λ
`

T∗ − t∗
´´ `

1 − exp
`

−λ
`

T∗ − t∗
´´´

(a − 1 + ε)

+ exp(−2λ(T∗ − t∗))(1 − exp(−λt∗))

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

3

7

7

7

7

7

7

7

7

7

7

7

7

5

ds

=
1 − exp

`

−2λ
`

T − T∗´´

2
(a + ε)

+ exp(−λ(T − T
∗
)

`

1 − exp(−λ(T − T
∗
)
´

0

B

B

B

B

B

B

B

B

B

@

− (a + ε) +
1−exp(−2λT∗)

2 (a + ε) + exp
`

−λ
`

T∗ − t∗
´´

− exp
`

−2λ
`

T∗ − t∗
´´

+ (a + ε)

„

1−exp(−2λ(T∗−t∗))
2 − exp

`

−λ
`

T∗ − t∗
´´

+ exp
`

−2λ
`

T∗ − t∗
´´

«

−
`

T∗ − t∗
´

λ exp
`

−λ
`

T∗ − t∗
´´

(a − 1 + ε)

+ exp
`

−λ
`

T∗ − t∗
´´ `

1 − exp
`

−λ
`

T∗ − t∗
´´´

(a − 1 + ε)

+ exp(−2λ(T∗ − t∗))(1 − exp(−λt∗))

1

C

C

C

C

C

C

C

C

C

A

=
1 − exp

`

−2λ
`

T − T∗´´

2
(a + ε)

+ exp(−λ(T − T
∗
)

`

1 − exp(−λ(T − T
∗
)
´

0

B

B

B

B

B

B

B

B

@

− (a + ε)

+ (a + ε)
˘

1 − exp(−2λ
`

T − t∗
´

)
¯

− (a − 1 + ε)
˘

exp
`

−λ
`

T∗ − t∗
´´

+ exp
`

−2λ
`

T∗ − t∗
´´¯

−
`

T∗ − t∗
´

λ exp
`

−λ
`

T∗ − t∗
´´

(a − 1 + ε)

+ exp
`

−λ
`

T∗ − t∗
´´ `

1 − exp
`

−λ
`

T∗ − t∗
´´´

(a − 1 + ε)

+ exp(−2λ(T∗ − t∗))(1 − exp(−λt∗))

1

C

C

C

C

C

C

C

C

A

29



since

∫ T ∗−t∗

0

exp(−2λt)λ

(
exp(−λ(T ∗ − t∗ − t)) +

∫ T ∗−t∗−t

0

exp(−λτ)λU(T ∗ − t − τ)dτ

)
dt

=

∫ T ∗−t∗

0

exp(−2λt)λ exp(−λ(T ∗ − t∗ − t))dt + exp(−2λt)λ ·(∫ T ∗−t∗−t

0

exp(−λτ)λ {(a + ε) − exp(−λ(T ∗ − t − τ − t∗))(a − 1 + ε)} dτ

)
dt

=

∫ T ∗−t∗

0

λ exp(−λ(T ∗ − t∗ + t))dt + exp(−2λt)λ[{1 − exp(−λ (T ∗ − t∗ − t))} (a + ε)

− (T ∗ − t∗ − t) exp(−λ(T ∗ − t − t∗))(a − 1 + ε)]dt

= exp (−λ (T ∗ − t∗)) − exp (−2λ (T ∗ − t∗))

+ (a + ε)

(
1 − exp(−2λ (T ∗ − t∗))

2
− exp (−λ (T ∗ − t∗)) + exp (−2λ (T ∗ − t∗))

)
− (T ∗ − t∗) λ exp (−λ (T ∗ − t∗)) (a − 1 + ε)

+ exp (−λ (T ∗ − t∗)) (1 − exp (−λ (T ∗ − t∗))) (a − 1 + ε)

∫ T ∗−t∗−t

0

exp(−λτ)λU(T ∗ − t − τ)dτ

=

∫ T ∗−t∗−t

0

(a + ε) exp (−λτ) λ − exp (−λ (T ∗ − t∗ − t)) λ (a − 1 + ε) dτ

= (a + ε) (1 − exp (−λ (T ∗ − t∗ − t))) − (T ∗ − t∗ − t) exp (−λ (T ∗ − t∗ − t)) λ (a − 1 + ε)

[(T ∗ − t∗ − t) λ exp (−λ (T ∗ − t∗ + t)) (a − 1 + ε)]′

= −λ exp (−λ (T − t∗ + t)) (a − 1 + ε) − λ2 (T ∗ − t∗ − t) exp (−λ (T ∗ − t∗ + t)) (a − 1 + ε)

[(T ∗ − t∗ − t) λ exp (−λ (T ∗ − t∗ + t)) (a − 1 + ε)] +

∫
λ exp (−λ (T ∗ − t∗ + t)) (a − 1 + ε)

= −
∫ T ∗−t∗

0

λ2 (T ∗ − t∗ − t) exp (−λ (T ∗ − t∗ + t)) (a − 1 + ε) dt
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(− (T ∗ − t∗) λ exp (−λ (T ∗ − t∗)) + (1 − exp (−λ (T ∗ − t∗)))) exp (−λ (T ∗ − t∗)) (a − 1 + ε)

• The last term is

exp(−2λ (T − T ∗))

{
exp(−λ(T ∗ − t∗)) +

∫ T ∗−t∗

0

exp(−λτ)λU(T ∗ − τ)dτ

}
= exp(−2λ (T − T ∗)){

exp(−λ(T ∗ − t∗)) +

∫ T ∗−t∗

0

exp(−λτ)λ [(a + ε) − exp(−λ(T ∗ − τ − t∗))(a − 1 + ε)] dτ

}
= exp(−2λ (T − T ∗)){exp(−λ(T ∗ − t∗))

+ {1 − exp(−λ (T ∗ − t∗))} (a + ε) − λ (T ∗ − t∗) exp(−λ(T ∗ − t∗))(a − 1 + ε)}

= exp(−2λ (T − T ∗))

{(a + ε) − exp(−λ (T ∗ − t∗)) (a − 1 + ε) − λ (T ∗ − t∗) exp(−λ(T ∗ − t∗))(a − 1 + ε)}

= exp (−2λ (T − T ∗)) (a + ε)

− exp (−2λ (T − T ∗)) (λ (T ∗ − t∗) + 1) exp (−λ (T ∗ − t∗)) (a − 1 + ε)

Hence, the payoff of taking D is

(a + ε)
1 − exp(−2λ (T − T ∗))

2
− (a − 1 + ε) (exp (−λ (T − t∗)) − exp(−λ (T − t∗ + T − T ∗)))

+
1 − exp (−2λ (T − T ∗))

2
(a + ε) + exp(−λ(T − T ∗) (1 − exp(−λ(T − T ∗)) ·

− (a + ε)

+ (a + ε)
{

1 − exp(−2λ(T ∗−t∗))
2

− exp(−2λT ∗)
2

}
− (a − 1 + ε) {exp (−λ (T ∗ − t∗)) + exp (−2λ (T ∗ − t∗))}

− (T ∗ − t∗) λ exp (−λ (T ∗ − t∗)) (a − 1 + ε)

+ exp (−λ (T ∗ − t∗)) (1 − exp (−λ (T ∗ − t∗))) (a − 1 + ε)

+ exp(−2λ(T ∗ − t∗))(1 − exp(−λt∗))


+ exp (−2λ (T − T ∗)) (a + ε) − exp (−2λ (T − T ∗)) (λ (T ∗ − t∗) + 1) exp (−λ (T ∗ − t∗)) (a − 1 + ε)
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(a + ε) − (a − 1 + ε) (exp (−λ (T − t∗)) − exp(−λ (T − t∗ + T − T ∗)))

+ exp(−λ(T − T ∗) (1 − exp(−λ(T − T ∗))

 −a+ε
2

(exp(−2λ (T ∗ − t∗)) + exp(−2λT ∗))

+ exp(−2λ(T ∗ − t∗))(1 − exp(−λt∗))


− exp(−λ(T − T ∗)) (T ∗ − t∗) λ exp (−λ (T ∗ − t∗)) (a − 1 + ε)

Subtracting

(a + ε) − exp(−λ(T − t∗))(a − 1 + ε)

yields

+ exp(−λ(T − T ∗) (1 − exp(−λ(T − T ∗))

 −a+ε
2

(exp(−2λ (T ∗ − t∗)) + exp(−2λT ∗))

+ exp(−2λ(T ∗ − t∗))(1 − exp(−λt∗))


− exp(−λ(T − T ∗)) (T ∗ − t∗) λ exp (−λ (T ∗ − t∗)) (a − 1 + ε) < 0
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Figure 1: Feasible payoff set and revision equilibrium payoff set in 

symmetric “battle of the sexes” game with a=2. 



 

 

Figure 2: Feasible payoff set and revision equilibrium payoff in asymmetric 

“battle of the sexes” game with a=2. 
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