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Abstract. What happens when priors are not common? We show that
for each type profile τ over a knowledge space (Ω,Π), where the state
space Ω is connected with respect to the partition profile Π, we can as-
sociate a value 0 ≤ ε ≤ 1 that we term the prior distance of τ . If τ has ε
prior distance, then for any bet f amongst the players, it cannot be com-
mon knowledge that each player expects a positive gain of ε ‖f‖∞, thus
extending no betting results under common priors. Furthermore, as more
information is obtained and partitions are refined, the prior distance, and
thus the extent of common knowledge disagreement, decreases.

1 Introduction

What happens if priors are not common? Can one measure ‘how far’
a belief space is from a common prior, and use that to approximate
standard results that apply under the common prior assumption?

The assumption that players’ posterior beliefs in models of dif-
ferential information are derived from a common prior has been
ubiquitous in the literature since (Ha1) introduced the concept in
his groundbreaking work on games with incomplete information. In-
deed, as pointed out in (Au2), the assumption of a common prior ‘is
pervasively explicit or implicit in the vast majority of the differen-
tial information literature in economics and game theory’. Although
more than a score of years have passed since those lines were pub-
lished, they retain their full force.

But despite its pervasiveness, the common prior assumption was,
and still is, debated and challenged (see (Gul) and (Au3)). In the
traditional framework, players are assumed to have a common prior
distribution over the set of possible states of the world at some ex
ante time, before they have any information at all. The receipt of
information by the players leads to partitions of the states of the
world, and each player updates his beliefs, using Bayes’ Rule, to



derive the posteriors. But the priors are primitives of this model,
and there is no a priori reason, given the construction of the model,
to suppose the players should agree on a prior. Furthermore, as (Gul)
notes, in many cases of interest all that observers have are profiles
of posteriors, not priors, and there are examples of posteriors that
could not possibly have been derived from common priors. He also
questions the assumption that there is a relevant hypothetical ‘prior
stage’ at all. (HS1) further show that the set of profiles of posteriors
that admit common priors is a topologically small set within the
space of all profiles of posteriors, which means that a generic profile
of posteriors will not have a common prior.

Surprisingly, there has been very little accomplished to date in
the systematic study of situations of non-common priors. So, what
if we pick up the gauntlet, and do not impose the assumption of
a common prior? One of the justifications for the common prior
assumption that is often raised is the claim that, once we begin to
relax the common priors assumption, ‘anything is possible’, in the
sense that heterogeneous priors allow “sufficient freedom as to be
capable of generating virtually any outcome”. (The quote is from
(Sa4). A similar argument appears in (Mo2)).

It is the intention of this paper to show that this is not so, at
least with regards to no disagreements results, initiated by the semi-
nal paper of (Au1). We show that to the contrary, the players’ profile
of posteriors always establishes an upper bound on the extent of dis-
agreements under common knowledge. In fact, following this line of
inquiry leads to the conclusion that, in a sense, the prior stage, if
such exists, can be ignored; the posteriors alone suffice for establish-
ing bounds on disagreements, and often those bounds will be tighter
than the bounds we would have been led to believe exist from con-
sideration of the ‘historical’ priors alone.

The main results of the paper are, in brief, as follows. Let τ be
a type profile for a two-player knowledge space (Ω,Π), where Ω is
a finite state space that is connected with respect to the partition
profile Π.1 Then we show that we can always associate τ with a value

1 The assumption that Ω is connected is adopted in the introduction for simplicity.
As detailed in the body of the paper, the natural units for considering the subject of
nearness of priors are the elements of the meet of a partition profile. This arises even



ε, normalised to 0 ≤ ε ≤ 1, which we term the prior distance of τ ,
and find a pair of priors that are ε-almost common priors. This is
the intuitive measure of ‘how far’ the space is from a common prior.

The significance of this definition is as follows. Let Eif(ω) denote
player i’s expected value of a random variable f at the state ω. If
τ has ε prior distance, and if it is common knowledge at any state
ω∗ that E1f(ω∗) ≥ η1, and E2f(ω∗) ≤ η2, then |η1 − η2| ≤ 2ε ‖f‖∞
(the factor of 2 is there because f can take negative values; if f is
restricted to non-negative values, that doubling factor disappears).

This result can be reformulated in a way that generalises the
standard ‘no betting’ characterisation of the existence of common
priors, which states that τ has a common prior if and only if there
is no bet f , in which player 1 takes the opposite side of the bet
to player 2 in each state, such that it is common knowledge that
both agents expect a positive gain from the bet (see (Mo1), (Sa2),
and (Fe1)). However, suppose that there is no common prior, and
that we have found a bet f at which it is common knowledge that
both players expect a positive gain, but that we charge the players
a transaction cost for undertaking the bet that is higher than the
most each of them can expect to gain — then the players will refrain
from taking the bet. The ε prior distance of τ implies a systematic
way to do this. We can show that if τ has ε prior distance, then for
every random variable f , it cannot be common knowledge that in
every state ω, E1f(ω) > ε ‖f‖∞, and E2f(ω) < −ε ‖f‖∞. This can
be interpreted as saying that for any f , it cannot be the case that
player 1 takes the opposite side to player 2 of the bet f , and it is
common knowledge that both expect to gain more than ε ‖f‖∞.

In the n-player case, we again associate each type profile with
a prior distance. If the prior distance is ε, then there is no n-tuple
of random variables f = (f1, . . . , fn), such that

∑
i fi = 0 and it is

common knowledge that in every state, Eif(ω) > ε ‖f‖∞. Again, this
can be interpreted as establishing a bound on common knowledge of
gains from bets.

if we limit consideration to common priors, as there are examples of type profiles
that have a common prior whose support lies only in some of the meet elements. If
we focus on connected state spaces, this technical matter can be ignored.



2 Preliminaries

2.1 Distributions

For a set Ω, denote by ∆Ω ⊂ IRΩ the simplex of probability distribu-
tions over Ω. An event is a subset of Ω, with the set of events denoted
by Σ. A random variable f over Ω is any element of IRΩ. Given a
probability measure µ ∈ ∆Ω and a random variable f , the expected
value of f with respect to µ, Eµf :=

∑
ω∈S f(ω)µ(ω). For an event

A such that µ(A) > 0, Eµ(f |A) :=
∑

ω∈A f(ω)µ(ω)/
∑

ω∈A µ(ω).
Relative to a given probability distribution, the expected value of an
event H is the expected value of the standard characteristic function
1H which is defined as:

1H(ω) =

{
1 if ω ∈ H
0 if ω /∈ H

2.2 Knowledge and Belief

A knowledge space for a nonempty, finite set of players I, is a pair
(Ω,Π). In this context, Ω is a nonempty set called a state space,
and Π = (Πi)i∈I is a partition profile, where for each i ∈ I, Πi is
a partition of Ω into measurable sets with positive measure. When
working with a knowledge space (Ω,Π), an element ω ∈ Ω is typi-
cally termed a state. For each ω ∈ Ω, we denote by Πi(ω) the element
of Πi containing ω. Πi is interpreted as the information available to
player i; Πi(ω) is the set of all states that are indistinguishable to i
when ω occurs.

Player i is said to know an event E at ω if Πi(ω) ⊆ E. We
define for each i a knowledge operator Ki : 2Ω → 2Ω, by Ki(E) =
{ω | Πi(ω) ⊆ E}. Thus, Ki(E) is the event that i knows E. A
partition Π ′ is a refinement of Π if every element of Π ′ is a subset
of an element of Π. Refinement intuitively describes an increase of
knowledge.

The meet of Π, denoted ∧Π, is the partition that is the finest
among the partitions that are simultaneously coarser than all the
partitions Πi. We will denote by Π(ω) the element of ∧Π containing
ω. Π is called connected when ∧Π = {Ω}.



A type function for Πi is a function ti : Ω → ∆Ω that associates
with each state ω a distribution in ∆Ω, in which case the latter is
termed the type of i at ω. Each type function ti further satisfies the
following two conditions:

(a) ti(ω)(Πi(ω)) = 1, for each ω ∈ Ω;

(b) ti is constant over each element of Πi.

A type profile for Π is a vector of type functions, τ = (ti)i∈I ,
where for each i, ti is a type function for Πi, which intuitively rep-
resents the player’s beliefs. For f ∈ IRΩ, denote by Eif the element
of IRΩ defined by Eif(ω) = ti(ω)f .

2.3 Common Priors and Common Knowledge

A prior for a type function ti is a probability distribution p ∈ ∆Ω,
such that for each π ∈ Πi, if p(π) > 0, and ω ∈ π, then ti(ω)(·) =
p(·|π). If we start with a probability distribution p over Ω, and then
consider a partition Πi, we can always form a type function ti for
which p is a prior, by applying Bayes’ Rule, relative to Πi(ω), at
each state ω. Relative to a type profile τ , denote the set of all priors
of player i by Pi(τ), or simply by Pi when τ is understood.2 In
general, Pi is a set of probability distributions, not a single element;
as pointed out by (Sa2), Pi is the convex hull of all of i’s types.

A common prior for the type profile τ is a probability function
p ∈ ∆Ω which is a prior for each player i.3 A type profile τ is called
consistent (the term is due to Harsányi) when it has a common prior.

An event E ⊆ Ω is self-evident if for all ω ∈ E and each i ∈ I

Πi(ω) ∈ E.(1)

In particular, every element of the meet, M ∈ ∧Π, is self-evident.

2 Strictly speaking, the set of priors of a player i depends solely on i’s type function
ti, not on the full type profile τ . However, since we are studying connections between
sets of priors of different players, we will find it more convenient to write Pi(τ), as
if Pi is a function of τ .

3 Contrasting a prior for ti with the types ti(ω, ·), the latter are referred to as the
posterior probabilities of i.



An event E is common knowledge at ω ∈ Ω iff there exists a
self-evident event F 3 ω such that for all i ∈ I

F ⊆ Ki(E).(2)

In fact, the element of the meet containing ω is also known as the
common knowledge component of ω, because it is the smallest self-
evident set containing ω.

2.4 Characterisation of the Existence of Common Priors

We adopt the standard notation that for vectors x1, x2 ∈ IRΩ, x1 >
x2 means that x1(ω) > x2(ω) for all ω ∈ Ω, and x1 > 0 means that
x1(ω) > 0 for all ω. x1 ≥ x2 means that x1(ω) ≥ x2(ω) for all ω ∈ Ω,
and there is at least one ω∗ such that x1(ω

∗) = x2(ω
∗).

In the two-player case, i.e. |I| = 2, the existence of common priors
is characterised by the statement:

A type space τ has a common prior iff there is no f ∈ IRΩ

such that

E1f > 0 > E2f.

When |I| = n, the characterisation of the existence of common
priors is accomplished by:

A type space τ has a common prior iff there are no f1, . . . , fn ∈
IRΩ, such that

∑n
i=1 fi = 0, and Eifi > 0 for all i ∈ I.

The two-player characterisation is a special case of the n-player
case, slightly reworded.

The functions fi, which sum to zero, can be interpreted as a
bet between the players. The condition Eifi(ω) > 0, for each state
ω, amounts to saying that the positivity of Eifi is always common
knowledge amongst the players. Thus, a necessary and sufficient con-
dition for the existence of a common prior is that there is no bet for
which it is always common knowledge that all players expect a pos-
itive gain. This establishes a fundamental, and remarkable, two-way
connection between posteriors and priors.



The most accessible proof of this result is in (Sa2). It was proved
by (Mo1) for finite type spaces and independently by (Fe1) for com-
pact type spaces. (BN1) proved it for finite type spaces with two
agents.

2.5 Background Assumptions

Through the main body of this paper, the state space Ω will be
assumed to satisfy |Ω| = m, where m is a positive integer. All
partition profiles will further be assumed to be connected, i.e., all
meets will all be assumed to be singletons. The extension of results to
non-connected spaces is straightforward.4 Working with a connected
space Ω has the advantage that a statement such as ‘it is common
knowledge that Eif > 0’ reduces to ‘Eif(ω) > 0 for all ω ∈ Ω.

3 The Two Player Case

3.1 Prior Distance

As noted in Section 2.4, the shortest and most direct proof of the
Common Prior Characterisation Theorem, appears in (Sa2). It is
ultimately based on the observation that the players’ sets of priors,
{Pi}i∈N , are compact and convex sets. In the two-player case, the
proof runs as follows:

Since a common prior exists if and only if P1 ∩ P2 6= ∅, this
immediately implies that there does not exist a common prior if and
only if P1 and P2 can be strongly separated, i.e., if and only if there
is a random variable g ∈ IRΩ and c ∈ IR, such that x1g > c > x2g,
for every x1 ∈ P1 and x2 ∈ P2.

4 We mention here in passing that even when relating to common priors it is nat-
ural to restrict consideration to meet elements, rather than entire state spaces.
Consider a simple example: let τ be defined by Ω = {ω1, ω2, ω3, ω4}, Π1 = Π2 =
{{ω1, ω2}, {ω3, ω4}}, t1 = {{ 1

3
, 2

3
}, { 1

2
, 1

2
}}, t2 = {{ 1

3
, 2

3
}, { 1

4
, 3

4
}}. τ is a positive type

profile, and it is in fact consistent: it has a single common prior, p = { 1
3
, 2

3
, 0, 0}.

But while the players cannot agree to disagree under common knowledge at states
ω1 and ω2, they will have disagreements at states ω3 and ω4. If we break down Π
into its two meet elements, M1 = {ω1, ω2} and M2 = {ω3, ω4}, it is clear that the
source of this is that τM1 has a common prior, but τM2 does not.



The proof then proceeds, by appropriately subtracting terms
from the coordinates of g to yield f such that x1f > 0 > x2f ,
and then concludes, since this must hold true for the extreme points
of P1 and P2, that a common prior fails to exist if and only if
E1f > 0 > E2f , which is equivalent to common knowledge amongst
the players that one player ascribes positive expectation at every
state to f , and that the other player ascribes negative expectation
to f at every state. Hence we have found a bet with respect to which
there is common knowledge that both players believe they have pos-
itive expectation of winning.

The starting point here is the further observation that one can
draw even more information from the separation between the sets
of priors. To begin with, there is a standard measure of distance
between two compact sets. Let ‖·‖ be any norm on IRΩ. Then define
the d‖·‖-distance between the common prior sets, d‖·‖(P1, P2), by

(3) d‖·‖(P1, P2) := inf
ρ1∈P1,ρ2∈P2

‖ρ1 − ρ2‖ .

Furthermore, by compactness, there are distributions µ1 ∈ P1

and µ2 ∈ P2, at which the minimal distance d‖·‖(P1, P2) is attained.
We choose to measure the distance between the sets of priors using
the L1 norm, ‖x‖1 :=

∑m
i=1 |xi|. This gives us, for each type profile

τ , the unique ε we seek:

Definition 3.11. Given a type profile τ , the prior distance of τ is

pd(τ) :=
d‖·‖1(P1, P2)

2

�

The division by two in Definition 3.11 is for the sake of normali-
sation: 0 ≤ pd(τ) ≤ 1 for any τ . Since τ has a common prior if and
only if the intersection of P1 and P2 is non-empty, it has a common
prior if and only if pd(τ) = 0. The prior distance in a sense measures
‘how far’ the type space is from having a common prior.

Definition 3.12. Given a type profile τ such that pd(τ) = ε, a
pair of priors µ1 ∈ P1 and µ2 ∈ P2 that are of L1 distance 2ε from



each other and satisfy the property that there exist a pair of parallel
supporting hyperplanes of P1 and P2 at µ1 and µ2, respectively, are
nearest priors of τ . Given a pair of nearest priors µ1 and µ2, a point
µ that is equidistant between µ1 and µ2 is an almost common prior
of τ . We will also sometimes call a pair of nearest priors ε-nearest
priors, and an almost common prior an ε-almost common prior, we
when wish to stress that pd(τ) = ε. �

3.2 Bounded Common Knowledge Disagreement

Looking again at the proof of the characterisation of the existence
of common priors in (Sa2), notice that it hinges on the existence of
a random variable g ∈ IRΩ, and α ∈ IR, such that

x1g > α > x2g

for all x1 ∈ P1 and x2 ∈ P2. This can be re-written as the existence
of β, γ ∈ IR such that

(4) x1g ≥ β > α > γ ≥ x2g for all x1 ∈ P1 and x2 ∈ P2.

Intuitively, |β − γ| represents the ‘extent of common knowledge dis-
agreement’ between the players, with respect to g. The question
that will concern us in this section is: can we identify a g, and β, γ,
such that (4) obtains, and |β− γ|, the extent of common knowledge
disagreement, is maximal, among all random variables g in some
bounded subset of IRΩ?

To make the connection between almost common priors and com-
mon knowledge disagreement, we make use of a fundamental prop-
erty of duality. Let pd(τ) = ε, and let µ1 and µ2 be ε-nearest priors,
with µ the corresponding ε-almost common prior. Denote the sup-
port functional of Pi by

hi(f) = sup
φ∈Pi

(φ · f),

and then denote

(5) δτ = max
{f∈IRΩ :‖f‖∞≤1}

[µ · f − h1(f)].



Applying the Minimum Norm Duality Theorem (see Theorem 1 on
page 136 of (Lu1)), δτ = ε, and there is a random variable f ∗ such
that ‖f ∗‖∞ ≤ 1 and δτ is attained. Furthermore, f ∗ is aligned with
µ− µ1, and hence (by Definition 3.12), is also aligned with µ1 − µ2,
and −f ∗ is the random variable of L∞-norm less than or equal to
one at which µ · f − h2(f)) is maximised.

Geometrically, identifying f ∗ is tantamount to finding the par-
allel supporting hyperplanes of P1 and P2 of greatest distance.5 By
Equation 5, there is a β such that

x1f
∗ ≥ β

for all x1 ∈ P1 (thus defining a hyperplane), and similarly there is a
γ such that

γ ≥ x2f
∗

for all x2 ∈ P2. As a consequence of the Minimum Norm Duality
Theorem,

|β − γ| = 2ε,

the L1 distance between these two hyperplanes (and between P1 and
P2), and furthermore, there are no g ∈ IRΩ with ‖g‖∞ ≤ 1, and
b, d ∈ IR, such that |b − d| > 2ε and x1g ≥ b > d ≥ x2g for every
x1 ∈ P1 and x2 ∈ P2. We have thus accomplished the goal we set in
the paragraph immediately after Equation (4).

Proposition 3.21. A two-player type profile τ has ε prior distance
if and only if

1. there exists a random variable ‖f ∗‖∞ ≤ 1, and a pair (µ1, µ2) ∈
P1 × P2, such that Eµ1f

∗ − Eµ2f
∗ = 2ε; and

2. there does not exist any random variable ‖g‖∞ ≤ 1 such that
Eϕ1g − Eϕ2g > 2ε for every pair (ϕ1, ϕ2) ∈ P1 × P2.

Proof. Suppose that pd(τ) = ε, with ε-nearest priors (µ1, µ2) and
ε-almost common prior µ. As shown in the previous paragraphs, that

5 The study of the maximal distance between parallel supporting hyperplanes of
convex sets has recently been a focus of efforts in statistical learning theory, where
it goes under the name of seeking the ‘maximal margin hyperplane’, or ‘optimal
hyperplane’.



implies the existence of a random variable f ∗, with ‖f ∗‖∞ ≤ 1, such
that µ1f

∗ − µf ∗ + µf ∗ − µ2f
∗ = Eµ1f

∗ − Eµ2f
∗ = 2ε. At the same

time, there does not exist g, with ‖g‖∞ ≤ 1, such that for every pair
ϕ1 ∈ P1 and ϕ2 ∈ P2, there exist β, γ ∈ IR, such that ϕig ≥ β and
ϕjg ≤ γ and β − γ > 2ε, i.e., Eϕ1g − Eϕ2g > 2ε.

In the other direction, if there exists an f ∗ as in the statement of
the proposition, then f ∗ defines a pair of parallel supporting hyper-
planes H1 of P1 and H2 of P2 of maximal distance apart 2ε. Choosing
µ1 ∈ H1 ∩ P1 and µ2 ∈ H2 ∩ P2 gives a pair of ε-nearest priors.

Proposition 3.22. A two-player type profile τ has ε prior distance
if and only if

1. there does not exist any random variable ‖f‖∞ ≤ 1 such that
E1f − E2f > 2ε for all ω ∈ Ω; and

2. there exists ‖f ∗‖∞ ≤ 1 such that E1f
∗ − E2f

∗ ≥ 2ε.

Proof. There exists a random variable f , with ‖f‖∞ ≤ 1, such that
for all ω ∈ Ω, E1f(ω)−E2f(ω) > 2ε, if and only if for every ω, and
type t1 of player 1 at ω and type t2 of player 2 at ω, t1f − t2f >
2ε. But every prior pi ∈ Pi is a convex combination of the player
i’s types. Hence this holds if and only if for every pair of priors
(ϕ1, ϕ2) ∈ P1 × P2, ϕ1f − ϕ2f > 2ε.

Noting that ϕ1f−ϕ2f ≤ ‖ϕ1 − ϕ2‖1 ‖f‖∞, we then immediately
have that pd(τ) = ε implies that there does not exist a random
variable ‖f‖∞ ≤ 1 such that for all ω ∈ Ω, E1f(ω) − E2f(ω) > 2ε.
In addition, pd(τ) = ε implies the existence of ‖f ∗‖∞ ≤ 1 such that
ϕ1f

∗ − ϕ2f
∗ ≥ 2ε for all priors, while µ1f

∗ − µ2f
∗ = ε for a pair of

nearest priors µ1, µ2. But this can only hold true if E1f
∗−E2f

∗ ≥ 2ε.

In the other direction, the statement of the proposition implies
that there does not exist any random variable ‖g‖∞ ≤ 1 such that
Eϕ1g − Eϕ2g > 2ε for every pair of priors (ϕ1, ϕ2) ∈ P1 × P2, and
there exists ‖f ∗‖∞ ≤ 1 such that Eµ1f

∗ − Eµ2f
∗ = 2ε (obtained by

convex combinations giving positive weight only to types that are 2ε
apart), so that by Proposition 3.21, pd(τ) = ε.

Corollary 3.21. Let τ be a two-player type profile of ε prior dis-
tance, and let ω∗ ∈ Ω. Let f ∈ IRΩ be a random variable, and let



η1, η2 ∈ IR. If it is common knowledge at ω∗ that player 1’s expected
value of f is greater than or equal to η1, and player 2’s expected
value of f is less than or equal to η2, then

|η1 − η2| ≤ 2ε ‖f‖∞ .

Proof. Suppose that |η1 − η2| > 2ε ‖f‖∞. Let g := f
‖f‖∞

. Then g

satisfies ‖g‖∞ ≤ 1, yet |E1g(ω)−E2g(ω)| > 2ε for all ω, contradicting
the assumption that pd(τ) = ε.

This also leads to a generalisation of the No Disagreements The-
orem of (Au1), which reduces to it when ε = 0.

Corollary 3.22. Let τ be a two-player type profile of ε-prior dis-
tance, and let ω∗ ∈ Ω. Let H be an event. If it is common knowledge
at ω∗ ∈ Ω that E1(H) = η1 and E2(H) = η2, then |η1 − η2| ≤ ε.

Proof. Let f ∈ IRΩ satisfy 0 ≤ f(ω) ≤ 1 for all ω ∈ Ω. Then it
cannot be the case that |E1f(ω) − E2f(ω)| > ε for all ω. Suppose
by contradiction that this statement holds. Let g = 2f − 1. Then
g ∈ D∞, and |E1g(ω) − E2g(ω)| > 2ε for all ω, contradicting the
assumption that pd(τ) = ε.

Consider the standard characteristic function 1H . Since 0 ≤ 1H(ω) ≤
1 for all ω, and the expected value of 1H at every state is the ex-
pected value of the event H at that state, the conclusion follows.

Finally, we have our generalisation of the No Betting characteri-
sation:

Theorem 1. A two-player type profile τ satisfies pd(τ) = ε if and
only if

1. there does not exist a random variable f such that maxω f(ω) −
minω f(ω) ≤ 2, and E1f > ε and E2f < −ε; and

2. there exists f ∗ such that maxω f
∗(ω) − minω f

∗(ω) ≤ 2, and
E1f

∗ ≥ ε and E2f
∗(ω) ≤ −ε.

Proof. By Proposition 3.22, pd(τ) = ε iff there does not exist any
random variable f such that ‖f‖∞ ≤ 1 and E1f − E2f > 2ε, and



there exists an f ∗ such that ‖f ∗‖∞ ≤ 1 and E1f
∗ − E2f

∗ ≥ 2ε.
But the existence of a random variable f such that ‖f‖∞ ≤ 1 and
E1f − E2f > 2ε for all ω ∈ Ω is equivalent to the statement that
there exist b, c, d ∈ IR such that E1f(ω) ≥ b > c > d ≥ E2f(ω) for
all ω, and b− c = c− d = ε. Defining g := f − c yields E1(g)(ω) > ε
and E2(g)(ω) < −ε for all ω, and clearly maxω g(ω)−minω g(ω) ≤ 2.
Similar reasoning applies to f ∗.

We can interpret this in the following way: suppose, in the con-
text of player in a type space of ε prior distance, that a book-maker
seeks to make a ‘Dutch book’-type profit, by exploiting the belief dif-
ferences of the players with respect to a normalised random variable
f of common knowledge disagreement between the players. He there-
fore proposes that player 1 take a long position on f , and that player
2 take the opposite short position, so that if the true state is revealed
to be ω∗, player 1 gains/loses f(ω∗), and player 2 gains/loses −f(ω∗).
If set up correctly, both players believe that they cannot lose, but in
fact it is the book-maker who cannot lose – whatever he owes one
player when the bet is to be paid is covered by what the other player
pays him, while he profits from brokerage fees paid by both players.
The proposition shows that, no matter which L∞ normalised f is
used, it will never be the case that it is common knowledge that
both players expect to gain more than ε. Scaling ‖f‖∞ by a scalar
α scales the bound by the same α, so that in general, if pd(τ) = ε,
it cannot be the case that it is common knowledge that both players
expect to gain more than ε ‖f‖∞ by taking opposites sides of a bet
f . When ε is very small, this may imply significant limitations on
betting, in cases in which there is no common prior.

4 The n-Player Case

Now let |I| = n, so that τ is an n player type profile over the state
space Ω, where |Ω| = m. There are n sets of priors Pi(τ), one for
each player, and a common prior exists if and only if

⋂
i∈I Pi 6= ∅.

Following an idea in (Sa2), consider the bounded, closed, and
convex subsets of IRmn

(6) X := P1 × P2 · · · × Pn,



and

(7) Y := {(p, p, . . . , p) ∈ IRnm|p ∈ ∆m}.

Clearly,
⋂n
i=1 Pi = ∅ iff X and Y are disjoint. When they are

disjoint, we can, as in the previous section, seek points in X and Y,
respectively, that are of minimal L1 distance apart.

Definition 4.01. Given an n-player type space τ , and the corre-
sponding spaces X and Y , as defined in Equations (6) and (7), if
the L1 distance between X and Y is δ, define the prior distance of
τ , denoted pd(τ), to be δ

n
. If n-tuples x = (µ1, . . . , µn) ∈ X and

y = (p, . . . , p) ∈ Y are of minimal distance δ apart, such that there
exist a pair of parallel supporting hyperplanes of X and Y at x and
y, respectively, then x is a tuple of nearest priors, and p is an almost
common prior of τ .

As in the two-player case, division by n ensures normalisation.
To see this, let ‖f‖∞ ≤ 1 define parallel supporting hyperplanes of
X and Y of L1 distance δ apart, as in Definition 4.01, and x be
nearest priors with p a corresponding almost common prior. Then
|xf − pf | = δ, but since p and xi for all 1 ≤ i ≤ n are elements of
∆m, it follows that δ ≤ n, hence 0 ≤ pd(τ) ≤ 1.

The generalisation of the No Betting characterisation is then as
follows.

Theorem 2. An n-player type profile τ satisfies pd(τ) = ε iff

1. there does not exist an n-tuple of random variables (f1, . . . , fn) ∈
IRnm such that

∑
i fi = 0, and for all i, maxω fi(ω)−minω fi(ω) ≤

2 and Eif > ε; and
2. there exists an n-tuple of random variables f ∗ such that

∑
i fi =

0, and for all i, maxω fi(ω)−minω fi(ω) ≤ 2 and Eif ≥ ε.

Proof. Denote δ = nε. Using reasoning similar to that applied
several times in proofs above in the two-player case, pd(τ) = ε if
and only if there does not exist f = (f1, . . . , fn) ∈ IRnm such that
‖fi‖∞ ≤ 1 for all i, and for all x = (x1, . . . , xn) in X and y =
(p, . . . , p) in Y , xf − yf > δ, and there exists f ∗ = (f ∗1 , . . . , f

∗
n) ∈



IRnm with ‖f ∗i ‖∞ ≤ 1, and nearest priors x∗ = (µ1, . . . , µn) ∈ X and
a corresponding almost common prior p with y∗ = (p, . . . , p), such
that x∗f ∗ − y∗f ∗ = δ.

The condition xf − yf > δ, for all x ∈ X, and all y ∈ Y , with
f ∈ IRnm, ‖fi‖∞ ≤ 1, is equivalent to the existence of b, c, d ∈ IR such
that xf ≥ b > d ≥ yf and b − d > nε. We may then subtract d/n
from all the components of f , yielding a new function g = (g1, . . . , gn)
satisfying maxω gi(ω) − minω gi(ω) ≤ 1 for each i, such that for all
x ∈ X, and all p ∈ ∆m

n∑
i=1

xigi > nε,

and
n∑
i=1

pgi < 0.

Since the last inequality holds for all p ∈ ∆m, it is equivalent to∑
i gi < 0. Furthermore, since the coordinates of xi are non-negative,

uniformly increasing the coordinates of the gi leaves
∑

i xigi > δ, so
that we may assume that

∑
i gi = 0.

The fact that
∑

i xigi > δ = nε still leaves the possibility that
xigi < ε for some i. But let x∗i be the point that minimizes xigi
over Pi, for each i. Since

∑n
i=1 x

∗
i gi > nε, there are constants ci

guaranteeing x∗i gi + ci > ε for each i, satisfying
∑

i ci = 0. Denoting
by e the vector in IRm whose every coordinate is 1, define hi = gi+cie.
Then maxω hi(ω) − minω hi(ω) ≤ 2 for each i,

∑
i hi =

∑
i gi = 0,∑

i xihi > nε, and for each xi ∈ Pi, xifi > ε. The conclusion of the
theorem follows.

We can interpret this in the following way: suppose that a book-
maker seeks to make a ‘Dutch book’-type profit, by exploiting the
belief differences of the players, given a type profile with prior dis-
tance ε. He offers to sell the n players a portfolio of securities, one per
player. Each player i buys the security fi, and his gain/loss depends
on the value of that security when the true state ω is revealed. These
securities are carefully crafted in such a way that the book-maker
cannot lose, by arranging that

∑
i fi = 0, but are also crafted so that

each player believes he or she has a sure win, since Eifi(ω) > 0 at



each state ω. Then it cannot be the case that it is common knowledge
that every player expects to gain at least ε ‖f‖∞.

5 Conclusion

In the traditional framework of Bayesian theory, one assumes that
each player starts with a prior distribution over the set of possible
states of the world. As (differential) information is obtained by the
players, a partition profile is formed, which in turn leads to a type
profile (i.e., posteriors) as Bayes’ Rule is applied to each player’s
prior at each of his partition elements.

The dictionary entry for the word ‘prior’ includes two definitions:
preceding in time/order; or preceding in importance. A prior distri-
bution is called such because according to the traditional story it
precedes in time the information leading to the posterior, but there
is also a sense in which it is often perceived as preceding the posterior
in importance, as being the ‘prime factor’ from which the posterior
is passively derived.

The results of the previous sections indicate that, at least with
regards to disagreements under common knowledge, the posteriors
play a role that is more important than the priors. To see what is
meant by this, for simplicitly restrict attention to the 2-player case
(the argument applies just as well to the n-player case), let Ω be
finite, and suppose that the players begin with priors ϕ1

0 and ϕ2
0,

where the total variation distance between ϕ1
0 and ϕ2

0 is ε0 > 0. As
information is obtained, a partition profile Π1 (which we will assume
for simplicity has a singleton meet) is formed, and a corresponding
type profile τ1 is derived from the prior. Even though we have explic-
itly started with the priors ϕ1

0 and ϕ2
0, the set of priors of player 1 in

this type profile, P1(τ1), will generally contain more than one point
(in addition to ϕ1

0), and a similar statement holds true for P2(τ1). It
follows that ε1 = pd(τ1), the prior distance of τ1, satisfies ε1 ≤ ε0.
That is, it cannot be greater than ε0 – we can summarise this insight
as ‘increasing information can never increase (common knowledge)
disagreements’ – but it may well be smaller. Let ϕ1

1 and ϕ2
1 be the

ε1-almost common priors of τ1. If ε1 < ε0, we may disregard the



‘historical’ derivation of τ1 from ϕ1
0 and ϕ2

0, and for all intents and
purposes deal with τ1 ‘as if’ it was derived instead from ϕ1

1 and ϕ2
1.

This process can be continued. Let Ω � Π1 � Π2 � . . . be a
sequence of proper partition refinements (again, for simplicity, sup-
pose that they all have singleton meets; alternatively, we can fix a
‘true state’ ω∗ and focus on the sequence of connected components
Π1(ω

∗) � Π2(ω
∗) � . . .). Form a corresponding sequence of type

profiles τ1, τ2, . . ., by deriving, as above, τ1 from Π1 and the original
priors ϕ1

0 and ϕ2
0, deriving τ2 from Π2 and the ε1-almost common

priors ϕ1
1 and ϕ2

1 of τ1, and so forth. We then have a corresponding
sequence ε0 ≥ ε1 ≥ ε2 ≥ . . ., where for each j, εj is the prior distance
of τj.

By results appearing in (HS1), the sequence ε0 ≥ ε1 ≥ ε2 ≥ . . .
must end,6 at some n ≤ |Ω|−1, with εn = 0, at which point we are as
far as possible from the original separation of the priors, arriving at a
situation in which we may as well have started with a common prior.
It is in this sense that the posterior, i.e. the structure of the partition
profile and the type profile, plays a greater role in determining limits
of disagreements than the prior.

In the context of common priors, this remark is not new. (Ge1),
for example, presents a version of the well-known envelopes problem
in which the players refrain from betting, not because their posteri-
ors are derived from common priors, but because they know that the
posteriors could have been derived from a common prior, and hence
they know they cannot disagree. What we have here is an exten-
sion of this principle to all type profiles – what count for bounding
disagreements are not the historical priors, but the fictional almost
common priors from which the posteriors could have been derived.

The question of the need to assume a dynamic framework, with
an explicit prior stage followed by a ‘current’, or posterior stage,
plays a central role in a debate over the common prior assumption
between (Gul) and (Au3). (Gul) argues against always adopting such
a dynamic view. In his reply, (Au3), while defending the dynamic

6 It is shown in (HS1) that a partition profile that is tight, as defined there, always has
a common prior. In the case of a finite state space and two players, a partition profile
is tight if |Π1|+ |Π2| = |Ω|+1. It follows that a process of proper refinements, which
always add partition elements, inevitably brings about a tight partition profile.



framework as ‘perfectly legitimate and intuitive’, also agrees that it
would be desirable to deal ‘directly in terms of the “current”, poste-
rior probabilities, without any reference, either implicit or explicit,
to any prior stage.’ As the discussion here shows, all the data needed
for bounds on disagreements can be known from the posterior proba-
bilities, without reference to a prior stage. Indeed, even if there was,
historically, a prior stage, one is better off ignoring the ‘true’ priors
and considering instead the almost common priors.
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