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Abstract

In many situations, such as trade in stock exchanges, agents have many instances

to act even though the interaction lasts a relatively short time. The agents in such

situations can often coordinate their actions in advance, but coordination during

the game consumes too much time. An equilibrium in such situations has to be se-

quential in order to handle mistakes made by players. In this paper, we present a

new solution concept for in�nite-horizon dynamic games, which is appropriate for

such situations: a sequential uniform normal-form correlated approximate equilib-

rium. Under additional assumptions (players have symmetric partial information,

each player has a �nite number of actions at each stage, and each player may take

a �nite number of actions), we show that every such a game admits this kind of

equilibrium.

Subject classi�cations: games/group decisions: stochastic. �nancial institutions:

trading.

Area of review: decision analysis.

History: Received December 2009

1 Introduction

In the modern world there are many situations that last a relatively short time but

in which agents have many instances to act, such as on-line auctions and trade in stock

exchanges. In many cases di�erent agents share similar, though not identical, goals. Such

is the case when the agents work in the same �nancial institution, and they can coordinate

their actions in order to maximize the institution's pro�t, as well as the contribution of

each trader to this pro�t.
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As an illustrative example consider the following. The Bureau of Labor Statistics

publishes each month a news release on the U.S. employment situation (ES). This news

release is announced in the middle of the trading day in the European stock markets (on

the �rst Friday of each month at 13:30 London time). The ES announcement has a strong

impact on these markets (see Nikkinen et al., 2006 and the references within). Empirical

studies (see for example, Christie-David, Chaudhry and Khan, 2002) show that a few tens

of minutes elapse before �nancial instruments adjust to such announcements. This gap of

time (the �adjustment period�) may provide an opportunity for substantial pro�t to be

made by quick trading (�news-playing�). Consider the strategic interaction between a few

traders in a �nancial institution who coordinate in advance their actions in the adjustment

period. Each trader can make buy and sell orders for some �nancial instruments that are

under his responsibility. The traders share a common objective - maximizing the pro�t of

the institution. In addition to this, each trader also has a private objective - maximizing

the pro�t that is made in �nancial instruments that are under his responsibility (which

in�uences his bonuses and prestige).

Three natural questions arise when modeling the strategic interaction among the

traders in this example: (1) Which kind of game should be used? (2) Which solution

concept should be chosen? (3) Does a solution exist, and can we �nd one?

We begin by dealing with the �rst question. The adjustment period is relatively short in

absolute terms - a few tens of minutes. Nevertheless, the traders have many opportunities

to act, as they can make di�erent orders in each fraction of a second. In addition, the

point in time where the markets are fully adjusted may not be known to the players in

real-time. Thus, it seems appropriate to model this situation as a stochastic (dynamic)

game with in�nite-horizon, rather then modeling it as a game with a �xed �nite large

number of stages. See Rubinstein (1991) and Aumann and Maschler (1995, pages 131-137)

for discussions why even short strategic interactions may be better analyzed as in�nite-

horizon games.

The issue raised in the second question - which solution concept is appropriate - has

several aspects. First, we discuss how each trader evaluates payo�s at di�erent stages of

the in�nite-horizon game. As the interaction is short in absolute time, it is natural to

assume that payo�s are evaluated without discounting. Because, in undiscounted games,

payo�s that are obtained in the �rst T stages do not a�ect the total payo�, for every T ;

yet the interaction in our example is �nite, the solution concept should satisfy uniformity:

it should be an approximate equilibrium in any long enough �nite-horizon game. See

Aumann and Maschler (1995, pages 138-142) for arguments in favor of this notion.

The traders in the example can freely communicate before the game starts (that is,
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before the adjustment period begins), and coordinate their strategies once the ES an-

nouncement is made. When there are at least three players, under relatively mild con-

ditions, any equilibrium in an extended game with pre-play non-binding communication

among the players (�cheap talk�) is equivalent to a correlated equilibrium, and vice versa

(see, e.g., Ben-Porath, 1998). Aumann (1974) de�ned correlated equilibrium in a �nite

normal-form game as a Nash equilibrium in an extended game that includes a correlation

device, which sends a private signal to each player before the start of play. The strategy of

each player can then depend on the private signal that he received. Therefore the concept

of correlated equilibrium is natural in this setup.

For sequential games, two main versions of correlated equilibrium have been studied

(see, e.g., Forges 1986): normal-form correlated equilibrium, where each player receives

a private signal only before the game starts, and extensive-form correlated equilibrium,

where each player receives a private signal at each stage of the game. Unlike the �cheap�

communication before the game starts, communication along the play is costly when the

time between stages is short, such as in the leading example: the adjustment period is

short (a few dozen minutes), and each moment that is spent on communication may slow

down the traders and limit their potential pro�ts. Thus, the smaller set of normal-form

correlated equilibria is more appropriate in such cases. (Note that every normal-form

correlated equilibrium is an extensive-form correlated equilibrium, but the converse is not

true.)

As players may make mistakes, or forget what they were supposed to do in the equilib-

rium, the behavior of the players should be rational also o� the equilibrium path. That is,

players should best respond also after one player made a mistake, and deviated from the

equilibrium strategy pro�le. This is satis�ed by requiring the equilibrium to be sequential

(Kreps and Wilson, 1982).

The above reasoning limits the plausible outcomes of the game to the set of sequen-

tial uniform normal-form correlated equilibria. Myerson (1986a) de�ned and studied the

properties of sequential extensive-form correlated equilibria in �nite games, and closely

related notions (acceptable and perfect correlated equilibria) were studied in Myerson

(1986b) and Dhilon and Mertens (1996). As in�nite undiscounted games may only admit

approximate equilibria, we de�ne a sequential normal-form correlated (δ, ε)-equilibrium,

as a strategy pro�le where with probability at least 1− δ, no player can earn more than

ε by deviating at any stage of the game and after any history of play (as formally de�ned

in Section 2).

Another desirable property in our setup is that the expected payo� of each player be

independent of the pre-play communication. This facilitates the implementation of the
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coordination among the players, as none of them may feel discriminated by the coor-

dination process. Sorin (1998) de�nes a distribution equilibrium in a normal-form �nite

game, as a correlated equilibrium where the expected payo� of each player is indepen-

dent of his signal. We generalize Sorin's de�nition, and de�ne an approximate constant-

expectation correlated equilibrium, as a correlated equilibrium where the expected payo�

of each player hardly changes when he receives his signal. Every Nash equilibrium is a

constant-expectation correlated equilibrium, and, as demonstrated by Sorin (1998), the

set of these equilibria is not convex (see also Section 2).

The �rst contribution of this paper is the presentation of a new solution concept

for undiscounted dynamic games: a sequential uniform constant-expectation normal-form

correlated approximate equilibrium.

We now deal with the third question: proving the existence of this equilibrium. In this

paper we prove existence under the simplifying assumption that, throughout the game,

the traders have symmetric information on the �nancial markets, such as past prices of the

di�erent markets. This assumption is reasonable given that each trader can electronically

access the data on all of these prices. Although in reality each trader may actually focus

only on the information that is more relevant for the �nancial instruments under his

responsibility, he may obtain the relevant information of other players, when necessary.

A second simplifying assumption is that each player has a �nite number of actions. In

our example, each trader has a �nite set of �nancial instruments under his responsibility,

and for each such instrument he chooses a time to buy or a time to sell. Thus, it can be

assumed that a trader's strategy is a vector of buy and sell times, one for each �nancial

instrument under his responsibility.

Our model may �t situations of a di�erent nature, for example:

• Several countries plan to ally in a war against another country. The allying countries

share a common objective - maximizing the military success against the common enemy.

In addition, each country has private objectives, such as maximizing the territories and

resources it occupies during the war, and minimizing its losses. This situation has similar

properties to the leading example: (1) The war is relatively short in absolute time (a

modern war typically lasts a couple of weeks), but it consists of an unknown large

number of stages. (2) The leaders of each country can communicate and coordinate

their future actions before the war begins. On the other hand, secure communication

and coordination during the war may be costly and noisy. (3) Finally, usually only a

few of the battle�eld actions of each country are crucial to the outcome of the war (such

as the timing of the main military attack).

• A few male animals compete over the relative positions they shall occupy in the so-
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cial hierarchy or pack order. This competition is often settled by �a war of attrition�

(Maynard Smith, 1974). In most cases, the animals use �ritualized� �ghting and do not

seriously injure the opponents. The winner is the contestant who continues the war for

the longest time. Excessive persistence has the disadvantage of waste of time and energy

in the contest. This situation also shares similar properties with the leading example:

(1) The war of attrition is short in absolute time (usually a few hours or days), but

consists of an unknown large number of stages. (2) Shmida and Peleg (1997) discuss

how a normal-form correlation device can be induced in biological setups by phenotypic

conditional behavior, and Sorin (1998) discusses why the constant-expectation require-

ment is necessary for the stability of the population in evolutionary setups (see Section

2). (3) Finally, each animal in the war of attrition acts only once, by choosing when to

quit the contest.

Under the assumptions discussed earlier, all these strategic interactions are modeled as

follows. There is an unknown state variable on which players receive symmetric partial

information along the game. For each player i (from a �nite set of players), there is a �nite

number, Ti, that limits the number of actions he may take during the game. At stage 1

all the players are active. At every stage n, each active player declares, independently of

the others, whether he takes one of a �nite number of actions or �does nothing�. A player

who acted Ti times, becomes passive for the rest of the game and must �do nothing� in

all subsequent stages. The payo� of a player depends on the history of actions and on

the state variable. By induction one can show that the problem of equilibrium existence

reduces to the case when Ti = 1 for every player i. Moreover, one can show that the

problem further reduces to the case where each player has a single �stopping� action, and

that the game ends as soon as any player stops (see Section 5). Such a game is called a

(discrete undiscounted) stopping game.

Stopping games were introduced by Dynkin (1969), and later used in several models

in economics, management science, political science and biology, such as research and

development (see e.g., Fudenberg and Tirole, 1985; Mamer, 1987), struggle of survival

among �rms in a declining market (see e.g., Fudenberg and Tirole, 1986), auctions (see

e.g., Krishna and Morgan, 1997), lobbying (see e.g., Bulow and Klemperer, 2001), con�ict

among animals (see e.g., Nalebu� and Riley, 1985), and duels (see, e.g., Karlin, 1959).

Much work has been devoted to the study of undiscounted two-player stopping games.

This problem, when the payo�s have a special structure, was studied by Neveu (1975),

Mamer (1987), Morimoto (1986), Ohtsubo (1991), Nowak and Szajowski (1999), Rosen-

berg, Solan and Vieille (2001), Neumann, Ramsey and Szajowski (2002), and Shmaya and

Solan (2004), among others. Those authors provided various su�cient conditions under

which (Nash) approximate equilibria exist. In contrast with the two-player case, there is
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no existence result for approximate equilibria in multi-player stopping games.

Our main result states that for every δ, ε > 0, a multi-player stopping game admits

a sequential constant-expectation normal-form correlated (δ, ε)-equilibrium. We further

show that the equilibrium's correlation device has two appealing properties: (1) it is

canonical - each signal is equivalent to a strategy; and (2) it does not depend on the

speci�c parameters of the game. The proof relies on a stochastic variation of Ramsey's

theorem (Shmaya and Solan, 2004) that reduces the problem to that of studying the

properties of correlated ε-equilibria in multi-player absorbing games (stochastic games

with a single non-absorbing state). The study uses the result of Solan and Vohra (2002)

that any multi-player absorbing game admits a correlated ε-equilibrium.

Another interesting question is �nding such an equilibrium and characterizing the

properties of the set of equilibrium payo�s. Our proof is not constructive, and this question

remains open for future research.

The paper is arranged as follows. Section 2 presents the model and the result. A sketch

of the proof appears in Section 3. Section 4 contains the proof. In Section 5 we discuss

how to apply our result, which formally deals only with �simple� stopping games, to more

general situations, such as the leading example.

2 Model and Main Result

In the introduction, we presented an example of the strategic interaction among traders

when some macroeconomic news is published (the leading example), and discussed how

to model it by a stopping game. In this section we present the formal de�nitions, and

state our main result.

A stopping game is de�ned as follows:

De�nition 1 A stopping game is a 6-tuple G = (I,Ω,A, p,F , R) where:

• I is a �nite set of players;

• (Ω,A, p) is a probability space;

• F = (Fn)n≥0 is a �ltration over (Ω,A, p);
• R = (Rn)n≥0 is an F -adapted R|I|·(2

|I|−1)-valued process. The coordinates of Rn are

denoted by Ri
S,nwhere i ∈ I and ∅ 6= S ⊆ N .

A stopping game is played as follows. At each stage n, each player is informed which

elements of Fn include ω (the state of the world), and declares, independently of the

6



others, whether he stops or continues. If all players continue, the game continues to the

next stage. If at least one player stops, say a coalition S ⊆ I, the game terminates, and

the payo� to player i is Ri
S,n. If no player ever stops, the payo� to everyone is zero.

Remark 2 A stopping games ends as soon as one of the players stops. As discussed

earlier, the strategic interaction in the leading example is more complex but it can be

reduced to a stopping game, when one is interested in the question of equilibrium existence

(as discussed in Section 5).

We model the pre-play communication possibilities of the players by a correlation device:

De�nition 3 A (normal-form) correlation device is a pair D = (M,µ): (1)M = (M i)i∈I ,

where M i is a �nite space of signals the device can send player i, and (2) µ ∈ 4 (M) is

the probability distribution according to which the device sends the signals to the players

before the stopping game starts.

As discussed earlier, cheap talk communication among the players can be used to �mimic� a

correlation device. Speci�cally, when there are at least three players, under mild conditions

on the set of Nash equilibrium payo�s, any correlated equilibrium can be implemented as a

sequential equilibrium of an extended game with pre-play cheap talk (Ben-Porath, 1998;

see also Heller, 2009 for an implementation that is resistant to coalitional deviations).

This is also true for two players, under additional cryptographic assumptions (Urbano

and Vila, 2002).

Throughout the paper we denote the signal pro�le that the players receive from the

correlation device by m. Given a normal-form correlation device D, we de�ne an extended
game G (D). The game G (D) is played exactly as G, except that, at the outset of the

game, a signal pro�le m = (mi)i∈I is drawn according to µ, and each player i is privately

informed of mi. Then, each player may base his strategy on the signal he received.

As mentioned earlier, Shmida and Peleg (1997, Section 5) discuss how a normal-

form correlation device can be induced in nature by phenotypic conditional behavior.

Speci�cally, they present an example of butter�ies who compete for sunspot clearings in

a forest in order to fertilize females. When two butter�ies meet in a sunspot, they engage

in a war of attrition. The period of time each butter�y was in the spot before the �ghting,

is used as a normal-form correlation device: a �senior� butter�y stays for a long time in

the war, while a �new� butter�y gives up quickly.

For simplicity of notation, let the singleton coalition {i} be denoted as i, and let

−i = I\ {i} denote the coalition of all players besides player i. A (behavior) strategy for

player i in G (D) is an F -adapted process xi = (xin)n≥0, where x
i
n : (Ω×M i) → [0, 1].
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The interpretation is that xin (ω,mi) is the probability by which player i stops at stage n

when he received a signal mi.

Let θ be the �rst stage in which at least one player stops, and let θ =∞ if no player

ever stops. If θ <∞ let Sθ ⊆ I be the coalition that stops at stage θ. The expected payo�

of player i under the strategy pro�le x = (xi)i∈I is given by γi (x) = Ex

(
1θ<∞ ·Ri

Sθ ,θ

)
where the expectation Ex is with respect to (w.r.t.) the distribution Px over plays induced

by x. Given an event E ⊆ Ω and a set of signal pro�les M ′ ⊆M , let γi (x|E,M ′) be the

expected payo� of player i conditioned on E and on the signal pro�le being in M ′. Given

m′ ∈M ′, let γi (x|E,M ′,m′i) denote the expected payo� of player i conditioned on E, on

the signal pro�le being in M ′, and on the signal of player i being equal to m′i.

The strategy xi is ε-best reply for player i when all his opponents follow x−i if for every

strategy yi of player i: γi (x) ≥ γi (x−i, yi)− ε. Similarly, xi is ε-best reply conditioned on

E and M ′ if γi (x |E ,M ′) ≥ γi (x−i , y i |E ,M ′)− ε.

We say that a pro�le x in G (D) is ε-constant-expectation conditioned on E and M ′,

if whenever the state is in E ⊆ Ω and the signal pro�le is in M ′, the expected payo� of

each player changes by at most ε when he obtains his signal. We say that x is a (δ, ε)-

constant-expectation if this holds for some E and M ′ with probability at least 1− δ.

De�nition 4 Let G (D) be an extended stopping game (where D = (M,µ)), M ′ ⊆ M

and E ⊆ Ω. The strategy pro�le x in G(D) is a (δ, ε)-constant-expectation (where ε, δ ≥ 0)

if there is a set M ′ ⊆M and an event E such that µ(M ′) ≥ 1− δ, p(E) ≥ 1− δ, for every
i ∈ I and m′ ∈M ′: |γi(x|E,M ′,m′i)− γi(x|E,M ′)| ≤ ε.

The de�nition of an approximate constant-expectation correlated equilibrium generalizes

Sorin (1998)'s de�nition of distribution equilibrium for �nite normal-form games. We now

brie�y discuss some of its properties. First, every Nash equilibrium is (0, 0)-constant-

expectation correlated equilibrium. Second, unlike the set of correlated equilibria, the

set of constant-expectation correlated equilibria is not convex, even for �nite games, as

demonstrated in the �battle of the sexes� game illustrated in Table 1: both (T,R) and

(B,L) are constant-expectation correlated equilibria, but [0.5 (T,R) , 0.5 (B,L)] is not

(the payo� of a player is either 1 or 2, depending on his signal).

Table 1
�Battle of Sex� - a Normal-Form Two-Player Game

L R

T (0, 0) (2, 1)

B (1, 2) (0, 0)

8



As discussed earlier, constant-expectation correlated equilibria are more easily imple-

mented in economic setups such as the leading example, as none of the players may feel dis-

criminated against by the coordination process. The advantages of constant-expectation

equilibrium in biological setups is demonstrated by Sorin (1998, Example 1) as follows.

Consider a symmetric two-player game where the payo� (�tness) is 1 if both players play

A, 2 if both play B and 0 otherwise. Consider a correlated equilibrium in a population

game: half of the population are type A - they always play against other A's and they

play action A; the other half are type B - they always play against other B's and they

play action B. This equilibrium does not satisfy the constant-expectation property, and

it is not stable in an evolutionary setup: type B has a higher �tness and would take over

the whole population.

Given ω ∈ Ω, let Hn (ω) ⊆ Fn be the collection of all events in Fn that include

ω: Hn (ω) = {Fn ∈ Fn|ω ∈ Fn}. Hn (ω) denote the public history of play up to stage

n, when the true state is ω. Let Hn be the collection of all such histories of length n:

Hn = {Hn (ω) |ω ∈ Ω}, and letH =
⋃
n=1..∞Hn be the set of all histories. Let G(Hn,D,m)

be the induced stopping game that begins at stage n, when each player i has received the

private signal mi ∈M i, and the public history is Hn ∈ Hn. For simplicity of notation, we

use the same notation for a strategy pro�le in G (D) and for the induced strategy pro�le

in G(Hn,D,m).

As discussed earlier, we require players to be rational also o� the equilibrium path.

This is satis�ed by requiring the equilibrium to be sequential (Kreps and Wilson, 1982).

In what follows we adapt the de�nition of sequential equilibrium in a �nite extensive-form

game, to our framework of in�nite extended stopping games. The adaptation includes two

parts: (1) Simplifying the belief system because the only source for imperfect information

on past events is due to the private signals the players received from the correlation device

before the game starts. (2) De�ning an approximate variation of sequential equilibrium

due to the in�niteness of stopping games. Observe that we adopt the notation of Osborne

and Rubinstein (1994, Chapters 6 and 12), and do not consider simultaneous moves as a

source of imperfect information.

We begin by de�ning a belief system in an extended stopping game G (D) as a pro�le

of functions (qi)i∈I . Each function qi : H×M i →4 (M−i) assigns a distribution over the

signals of the other players. The distribution is interpreted as follows: after receiving a

signal mi and observing a public history H, player i assigns probability qi (H,mi) (m−i)

to the signal pro�le of the other players being m−i. Given M ′ ⊆ M , let qi (H,mi|M ′) be

the belief of player i over the signal pro�le, conditional on the signal pro�le being in M ′.

An assessment in an extended stopping gameG (D) is a pair (x, q) where x is a strategy
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pro�le and q is a belief system. An assessment is ε-sequentially rational, conditioned on

an event E and on M ′, if every player ε-best replies whenever the signal pro�le is in M ′

and the state is in E. When ε = 0 it coincides with the standard de�nition of sequential

rationality (Kreps and Wilson, 1982). Formally:

De�nition 5 Let G (D) be an extended stopping game (where D = (M,µ)), ε ≥ 0,

M ′ ⊆M , and E ⊆ Ω. An assessment (x, q) is ε-sequentially rational in G (D) conditioned

on E and M ′, if for every i ∈ I, ω ∈ E, n ∈ N, and signal pro�le m ∈M ′, xi is an ε-best

reply for player i conditioned on E and on M ′ in the induced game G(Hn (ω) ,D,m),

when his opponents play x−i, and his beliefs over the signal pro�le are qi (Hn (ω) ,mi|M ′).

A strategy pro�le is completely mixed if each player assigns positive probability to every

action (stop or continue) after every history. An assessment (x, q) is consistent if it is the

limit of a sequence of assessments ((xn, qn))∞n=1 with the following properties: (1) each

strategy pro�le xn is completely mixed; (2) each belief system qn is derived from xn using

Bayes' rule. An assessment is a sequential ε-equilibrium conditioned on E and M ′, if it is

ε-sequentially rational (conditioned on E and M ′) and consistent. Formally:

De�nition 6 Let G (D) be an extended stopping game (where D = (M,µ)), ε ≥ 0,

M ′ ⊆M , and E ⊆ Ω. An assessment (x, q) is sequential ε-equilibrium inG (D) conditioned

on E andM ′, if it is both ε-sequentially rational conditioned on E andM ′ and consistent.

De�nition 6 extends the standard de�nition of sequential equilibrium. That is, when ε = 0,

M = M ′ and E = Ω, it is equivalent to the standard de�nition of sequential equilibrium

(Kreps and Wilson, 1982).

An assessment is a sequential (δ, ε)-equilibrium if it is a sequential ε-equilibrium con-

ditioned on E and M ′, where E and M ′ have probabilities of at least 1− δ. Formally:

De�nition 7 Let G (D) be an extended stopping game and let δ, ε ≥ 0. An assessment

(x, q) is a sequential (δ, ε)-equilibrium of G (D) if there exists an event E ⊆ Ω and a set

of signal pro�les M ′ ⊆ M , such that p(E) ≥ 1− δ, µ(M ′) ≥ 1− δ, and x is a sequential

ε-equilibrium of G (D) conditioned on E and M ′.

Abusing notation, we say that a strategy pro�le x is a sequential (δ, ε)-equilibrium ofG (D)

if there is a belief system q, such that the assessment (x, q) is a sequential (δ, ε)-equilibrium

in G (D). Observe that when the correlation device is trivial (|M | = 1) sequentiality

is equivalent to subgame perfectness (Selten, 1965, 1975). Speci�cally, when |M | = 1,

the de�nition of a (δ, ε)-sequential equilibrium is equivalent to the de�nition of a (δ, ε)-

subgame-perfect equilibrium in Mashiah-Yaakovi (2009). Without the limitation |M | = 1,

every (δ, ε)-sequential equilibrium is a (δ, ε)-subgame-perfect equilibrium, but the converse

10



is not true.

We now de�ne a sequential correlated (δ, ε)-equilibrium.

De�nition 8 Let G be a stopping game and let δ, ε > 0. A sequential correlated (δ, ε)-

equilibrium is a pair (D, x) where D is a correlation device, and x is a sequential (δ, ε)-

equilibrium in G (D).

We end this subsection by de�ning another appealing property of a correlation device:

canonicality. A correlation device D = (M,µ) is canonical if each signal is equivalent to

a strategy.

De�nition 9 Let G be a stopping game. A correlation device D = (M,µ) is canonical

given the strategy pro�le x in G (D) if for each player i there is an injection between M i

and his set of strategies in G. That is x (mi) 6= x (m′i) for each mi 6= m′i.

The standard de�nition of a canonical correlation device for �nite games (Forges, 1986)

is that the set of signals is equal to the set of strategy pro�les. De�nition 9 is di�erent

because the set of signals is �nite, while the set of strategies is in�nite.

Our main result is the following:

Theorem 10 Let G = (I,Ω,A, p,F , R) be a multi-player stopping game with integrable

payo�s (supn∈(N
⋃
∞) ‖Rn‖∞ ∈ L1(p)). Then for every δ, ε > 0, G has a sequential (δ, ε)-

constant-expectation normal-form correlated (δ, ε)-equilibrium with a canonical correla-

tion device. Moreover the correlation device only depends on the number of players and

ε, and is independent of the payo� process.

The fact that the correlation device is independent of the payo� process allows the players

to use the same correlation device in every stopping game (assuming the number of

players and ε are �xed), and avoid the di�culties of constructing a new device for each

stopping game. Thus, the traders in the leading example can construct, once and for all,

a correlation deceive, and then use it for all future strategic interactions (regardless of the

speci�c implications of the macroeconomic news that is going to be released).

Remark 11 The (δ, ε)-equilibrium that we construct is uniform in a strong sense: it is

a (δ, 3ε)-equilibrium in every �nite n-stage game, provided that n is su�ciently large.

This can be seen by the construction itself (Proposition 17) or by applying a general

observation made by Solan and Vieille (2001).
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3 Sketch of the Proof

A periodic stopping game is a stopping game where after a �nite number of stages, if

not stopped earlier, the game restarts at the �rst stage. Assuming that the �ltration F is

�nite, such games are a special kind of absorbing games (stochastic games with a single

non-absorbing state). Solan and Vohra (2002) studied these games and proved that they

admit a correlated ε-equilibrium. Adapting their result to our framework, implies that

every periodic stopping game has either (1) a stationary equilibrium; or (2) a correlated

distribution η over the set of action pro�les in which a single player stops: one player is

chosen according to η and is asked to stop; incentives can be provided to ensure that the

player stops.

We strengthen the result of Solan and Vohra (2002) if case (1) holds, by showing that

there is a stationary sequential ε-equilibrium (by �perturbing� the game to continue with

positive probability at each stage). If case (2) holds, we modify the procedure in which

players are asked to stop in two ways. First, we ask each player to stop with probability

1 − ε (and not with probability 1 as in Solan and Vohra, 2002), to prevent players from

being able to deduce that they are o� the equilibrium path (even when other players

deviate). This allows us to obtain sequentiality. Second, we make sure that with high

probability, when a player receives his signal, he cannot deduce, which player has been

asked to stop. This modi�cation guarantees constant-expectation (which trivially holds

in the �rst case). Finally, we adapt the methods of Shmaya and Solan (2004) to deal

with in�nite �ltrations as well, and prove that such periodic games admit a correlated

(δ, ε)-equilibrium.

Shmaya and Solan (2004) proved a stochastic variation of Ramsey's Theorem (1930)

that allows us to divide an in�nite stopping game into an in�nite sequence of periodic stop-

ping games, and to concatenate the correlated (δ, ε)-equilibrium in each periodic game,

into a correlated (δ, ε)-equilibrium in the original in�nite game. We verify that the se-

quentiality and constant-expectation of each equilibrium in the periodic games imply the

same properties for the equilibrium in the in�nite game. Moreover we show that the con-

catenated correlated equilibrium uses a correlation device which is normal-form, and only

depends on the number of players and ε.
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4 Proof

4.1 Preliminaries

If with probability at least 1 − δ, the di�erence between the payo�s of two stopping

games G and G̃ is at most ε, then any sequential (δ, ε)-equilibrium in G is a sequential

(3δ, 3ε)-equilibrium in G̃. Hence now �x a stopping game G and assume without loss of

generality (w.l.o.g.) that the payo� process R is uniformly bounded and that its range is

�nite. In fact, we assume that for some K ∈ N, Ri
S,n ∈

{
0,± 1

K
,± 2

K
, ...,±K

K

}
for every

n ∈ N. LetD =
∏
i∈I, ∅6=S⊆I

{
0,± 1

K
,± 2

K
, ...,±K

K

}
be the set of all possible one-stage payo�

matrices of the stopping game G. Let Rn(ω) be the payo� matrix at stage n.

We now �x ε, δ > 0. Given any payo� matrix d ∈ D, let Ad ⊆
∨
n∈NFn be the event

that d occurs in�nitely often (i.o.): Ad = {ω ∈ Ω|i.o. Rn(ω) = d}, and let Bd,k ⊆
∨
n∈NFn

be the event that d never occurs after stage k : Bd,k = {ω ∈ Ω|∀n ≥ k, Rn(ω) 6= d}. Since
all Ad andBd,k are in

∨
n∈NFn, there existN0 ∈ N and FN0-measurable sets

(
Ād, B̄d

)
d∈D
∈

FN0 that approximate Ad and Bd,N0 . That is: (1) For each d ∈ D: Ād
⋂
B̄d = ∅ and(

Ād
⋃
B̄d

)
= Ω. (2) ∀d ∈ D, p

(
Ad|Ād

)
≥ 1− δ

3·|D| . (3) ∀d ∈ D, p
(
Bd,N0|B̄d

)
≥ 1− δ

3·|D| .

Let Φ =
⋃
d∈D

({
ω ∈ Ād|ω /∈ Ad

}⋃{
ω ∈ B̄d|ω /∈ Bd,N0

})
be the event that includes

all the approximation's �errors�. That is, Φ includes all states where a payo� matrix d

does not repeat in�nitely often even though ω ∈ Ād, and all states where a payo� matrix

d occurs after N0 even though ω ∈ B̄d. Observe that p(Φ) < δ
3
. For any H ∈ H let

DH =
{
d ∈ D|∃F ∈ H, s.t.F ⊆ Ād

}
be the set of payo� matrices that repeat in�nitely

often after history H (outside Φ), and let αiH = max
(
di{i}|d ∈ DH

)
be the maximal payo�

a player can get by stopping alone in these matrices.

Consider an induced game that begins after some bounded stopping time τ is reached.

The following standard lemma shows that in order to prove Theorem 10, it is enough to

show that each such game has an approximate constant-expectation sequential correlated

equilibrium with a canonical correlation device that depends only on |I| and ε.

Lemma 12 Let D = (M,µ) a canonical correlation device that depends only on |I| and
ε, M ′ ⊆M a set satisfying µ(M ′) > 1− δ, E ⊆ Ω an event such that p(E) > 1− δ, and τ
a bounded stopping time. Assume that for every ω ∈ E, m ∈M ′, and H = Hτ(ω) ∈ Hτ(ω),

there is a constant-expectation sequential ε-equilibrium, xH , in G(H,D,m) conditioned on

E and M ′. Then G (D) admits a (δ, ε)-constant-expectation sequential (δ, ε)-equilibrium.

This implies thatG admits a sequential (δ, ε)-constant-expectation normal-form correlated

(δ, ε)-equilibrium with a canonical device, which depends only on |I| and ε.
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PROOF. It is well known that any �nite-stage game admits a sequential 0-equilibrium.

Since τ is bounded, p(E) ≥ 1− δ and µ(M ′) ≥ 1− δ, the following strategy pro�le x is a

(δ, ε)-constant-expectation sequential (δ, ε)-equilibrium:

• Until stage τ , play a sequential equilibrium, which is trivially a constant-expectation

equilibrium, in the �nite stopping game that terminates at τ , if no player stops before

that stage, with a terminal payo� γi(xH).

• If the game has not terminated by stage τ , from that stage on, play the pro�le xH in

G(H,D,m).

Observe that for the concatenated pro�le x to be a normal-form correlated equilibrium, it

is necessary that each induced game's equilibrium would be constant-expectation. Other-

wise, the signal a player receives before the play starts may change his expected payo�s in

the induced games, and this may create pro�table deviations from x. It is also necessary

that all the correlated equilibria in the induced games use the same correlated device M .

Also observe that the sequentiality and constant-expectation of each equilibrium in the

induced games, imply that x has these two properties.

4.2 Finite Trees

Generally, a stopping game has an in�nite length and the �ltration is general. We now

consider a special kind of stopping game, which is periodic and has a �nite �ltration. Such

a game can be modeled by a game on a �nite tree. The game starts at the root and is

played in stages. Each node in the tree has a matrix payo� (in case players stop at that

node), and a distribution over its children nodes, which determines the probability that

the game would continue to each of these nodes, if no player stops. Given the current

node, and the sequence of nodes already visited, the players decide, simultaneously and

independently, whether to stop or to continue. Let S be the set of players that decides to

stop. If S 6= ∅, the play ends and the terminal payo� to each player i is determined by the

node's payo� matrix. If S = ∅, a new node is chosen according to the node's distribution

over its children. The process now repeats itself, with the child node being the current

node. When the players reach a leaf, the new current node is the root. A game on a tree is

essentially played in rounds, where each round starts at the root and ends once it reaches

a leaf. Formally:

De�nition 13 A stopping game on a �nite tree (or simply a game on a tree) is a tuple

T =
(
I, V, Vleaf , r, (Cv, pv, Rv)v∈V \Vleaf

)
, where:

• I is a �nite non-empty set of players;

14



•
(
V, r, (Cv)v∈V \Vleaf

)
is a tree, V is a nonempty �nite set of nodes, Vleaf ⊆ V is a

nonempty set of leaves, r ∈ V is the root, and for each v ∈ V \Vleaf , Cv ⊆ V \ {r} is a
nonempty set of children of v. We denote by V0 = V \Vleaf the set of nodes which are

not leaves;

and for every v ∈ V0:

• pv is a probability distribution over CV ; we assume that ∀ṽ ∈ Cv: pv(ṽ) > 0;

• Rv =
(
Ri
v,S

)
i∈I,∅6=S⊆I

∈ D is the payo� matrix at v if a nonempty coalition S stops at

that node.

Given a bounded stopping time n < σ and history Hn ⊆ Hn, let Gn,σ (Hn) be the induced

stopping game that begins at stage n , when the players are informed of Hn, and the game

restarts at stage n (where a new ω ∈ Hn is randomly chosen), if no player stopped before

reaching stage σ(ω). A simple adaptation of the methods of Shmaya and Solan (2004,

Sections 5-6) shows that Gn,σ (Hn) can be approximated by a game on a tree, Tn,σ (Hn),

such that every ε-equilibrium in Tn,σ (Hn) is a 3ε-equilibrium in Gn,σ (Hn). In the following

paragraph we sketch the main idea behind this approximation. The reader is referred to

Shmaya and Solan (2004) for the formal details.

For simplicity of presentation let σ be constant: σ = m > n. All that matters to the

players at stage m, is the payo� matrix at this stage (because if no player stops, the game

restarts at stage n with a new random ω ∈ Hn, which is independent of the information

the players have on the current ω). Thus we can cluster together the Fm-measurable
sets according to their payo� matrices, and have at most |D| leaves in the �nite tree. At

stage m − 1, players care both for the current payo� matrix, and for the distribution of

the payo� matrices at the next stage. Using a �nite approximation to this distribution

(rounding each probability up to ε/2m), enables clustering of Fm−1-measurable sets into

a �nite number of vertices as well. Similarly, one can show by a recursive procedure that

the entire game Gn,σ (Hn) can be approximated by a stopping game on a �nite tree.

Assuming that n > N0 we perturb the game on a tree Tn,σ (Hn) by not allowing players

to stop in any node v̄ where the payo� matrix Rv̄ is in B̄d. That is, in such nodes, players

must continue and the game goes on to one of v̄'s children.

4.3 Equivalence with Absorbing Games

A stopping game on a �nite tree T = Tn,σ (Hn) is equivalent to an absorbing game

(Solan and Vohra, 2002), where each round of T corresponds to a single stage of the

absorbing game. As an absorbing game, T has two special properties: (1) it is a recursive
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game: the payo� in the non-absorbing state is zero; (2) there is a unique non-absorbing

action pro�le.

Given a game on a tree T , let gi be the maximal payo� player i can get by stopping

alone. Let ṽi be a node that maximizes the last expression, and let dṽi ∈ D be the payo�

matrix in that stage. Adapting Proposition 4.10 in Solan and Vohra (2002) to the two

special properties gives the following:

Proposition 14 Let T be a game on a �nite tree. One of the following holds:

(1) There is a stationary absorbing sequential ε-equilibrium x.

(2) There is a stationary non-absorbing sequential equilibrium where all the players

always continue.

(3) There is a distribution η ∈ ∆(I × {ṽi}) such that:

(a)
∑
i∈I Pη(ṽ

i, i) = 1.

(b) For each player j ∈ I : ∑i∈I Pη(ṽ
i, i) ·Rj

{i},ṽi ≥ gj.

(c) Let the players that satisfy Pη(ṽ
i, i) > 0 be denoted as the stopping players. For

every stopping player i there exists a player ji 6= i, the punisher of i, such that:

gi ≥ Ri
{ji},ṽji .

Remark 15 Solan and Vohra (2002) does not guarantee that the stationary absorbing

equilibrium in case (1) is sequential . Speci�cally, players may play irrationally after some

player i is supposed to stop with probability 1 according to xi. To prevent it, we perturb

the game T . Let Tε be a game similar to T , except that when a non-empty coalition wishes

to stop at some node, there is a probability ε that the �stopping request is ignored�, and

the game continues to the next stage. Tε is also equivalent to an absorbing game, and Solan

and Vohra (2002)'s proposition can be applied. In Tε no node is ever o� the equilibrium

path, and thus any Nash equilibrium in Tε is subgame perfect, which is equivalent to being

sequential, as the correlation device is trivial (as discussed after De�nition 7). Any such

stationary sequential equilibrium in Tε naturally de�nes a strategy pro�le in T . One can

see that this pro�le is a stationary sequential ε-equilibrium in T .

4.4 A Stochastic Variation of Ramsey's Theorem

Solan and Shmaya (2004) presents a stochastic variation of Ramsey's theorem (Ram-

sey, 1930), and a method to use it to disassemble an in�nite stopping game into games

on �nite trees with special properties. In this subsection we sketch the main ideas of this

method, while leaving some of the formal details to the appendix.

Let C be a �nite set of �colors�. An F -consistent C-valued NT-function (or simply an
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NT-function) is a function that attaches a color cn,σ (ω) = cn,σ (Hn (ω)) to every induced

stopping game Gn, σ (Hn (ω)). Given an NT-function and two bounded stopping times

τ1 < τ2, let cτ1,τ2(ω) = cτ1(ω),τ2(ω). Thus cτ1,τ2 is an Fn-measurable random variable.

Shmaya and Solan (2004, Theorem 4.3) proved the following proposition :

Proposition 16 For every �nite set C, every C -valued F-consistent NT -function c, and

every ε > 0, there exists an increasing sequence of bounded stopping times 0 < σ1 < σ2 <

σ3 < ... such that: p (cσ1,σ2 = cσ2,σ3 = ...) > 1− ε.

We now present a somewhat simpli�ed version of the NT-function that would be used to

prove Theorem 10; the exact function is described in the appendix.

Let W =
∏
i∈I

{
0,± 1

K
, ...,±K

K

}
be a �nite 1/K-approximation of [−1, 1]|I|. Let C =

{{1, 2, 3} ×W ×W} be a set of colors, where the �rst component denote which case of

Proposition 14 holds in Tn, σ (Hn (ω)); the second component denotes the approximate

equilibrium payo�, and the third component denotes the payo� of each player when he

stops alone in case 3. That is, cn,σ (ω)=(case, weq, walone) is de�ned as follows:

• case = 1 if there is a stationary absorbing equilibrium in Tn, σ (Hn (ω)) (that is, case

(1) of Proposition 14 holds). Otherwise, case = 2 if there is a sequential non-absorbing

equilibrium in Tn, σ (Hn (ω)). Otherwise, case = 3 and then case (3) of Prop. 14 holds.

• weq is the equilibrium payo� in cases (1) and (2), and it is the payo� that is induced

from the distribution η in case (3): weq =
∑
i∈I Pη(ṽ

i, i) ·Rj
{i},ṽi .

• walone = g in case (3) (the maximal payo� each player can get by stopping alone in

Tn, σ (Hn (ω)) when the other players always continue), and it is arbitrarily set to 0 in

cases (1) and (2).

By Proposition 16 there exists an increasing sequence of bounded stopping times 0 < σ1 <

σ2 < σ3 < ... such that: p (cσ1,σ2 = cσ2,σ3 = ...) > 1− δ
3
. We assume w.l.o.g. that σ1 > N0.

Let E = Ω\
(
Φ
⋃{

ω ∈ Ω|∃n s.t. cσn,σn+1 (ω) 6= c1,2 (ω)
})

be the event where there are no

approximation errors (as de�ned in Subsection 4.1) and the color of all �nite trees after

σ1 is the same. Observe that P (E) > 1− δ.

4.5 Constant-Expectation Sequential Correlated Equilibrium

By Lemma 12, proving Theorem 10 only requires the following proposition:

Proposition 17 Let E and σ1 be de�ned as in the previous subsection. There is a canon-

ical correlation device D = (M,µ), and a subset M ′ ⊆M satisfying µ (M ′) > 1− δ, such
that for every m ∈ M ′ and every ω ∈ E, there is a sequential ε-constant-expectation ε-
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equilibrium conditioned on E andM ′, xH , in the game G(H,D,m), where H = Hσ1(ω)
(ω).

PROOF. Let c = cσ1,σ2 (ω)=(case, weq, walone) be the color of the game Gσ1(ω),σ2 (H).

Solan and Shmaya (2004) investigated 2-player stopping games, when case is equal either

to 1 or 2 (case 3 is only relevant to games with more than two players). They show that

one can concatenate the sequential stationary Nash ε/11-equilibria of each approximating

game on a tree Tσk(ω),σk+1

(
Hσk(ω) (ω)

)
into a sequential ε-equilibrium (conditioned on E),

xH , in the induced game without pre-play correlation G(H). The pro�le xH naturally

induces a sequential ε-constant-expectation ε-equilibrium conditioned on E and M ′ in

G(H,D,m), given any correlation device D and any signal pro�le m.

For this concatenation to work when case = 1, Solan and Shmaya (2004) provided

appropriate minimal bounds to the probability of termination in the �rst round of the

stationary approximate equilibrium of each game on a tree Tσk(ω),σk+1

(
Hσk(ω) (ω)

)
, that

guarantee that the concatenated pro�le, xH , is absorbed with probability 1. With minor

adaptations Shmaya and Solan (2004)'s method works also in multi-player stopping games,

as described in the appendix.

So we only have to deal with the third case (case = 3). The construction in this case

is an adaptation of the procedure of Solan and Vohra (2002), which deals with quitting

games (stationary stopping games where payo� is the same at all stages). The changes

with respect to the original procedure are needed to guarantee constant-expectation and

sequentiality (which are not satis�ed in Solan and Vohra, 2002). Let η = ησ1,σ2 be a corre-

lated strategy pro�le in Tσ1,σ2

(
Hσ1(ω) (ω)

)
that satis�es 3(a), 3(b) and 3(c) in Proposition

14. The de�nition of αiH implies that αiH = wialone. This implies that there is a distribution

θ = θ(η) ∈ ∆(DH × I) such that for each player i ∈ I:

(1) θ(d, i) > 0 ⇒ Ri
i,d = αiH , ∀d′ 6= d ∈ DH , θ(d

′, i) = 0. Let d(i) ∈ DH be the payo�

satisfying θ(d (i) , i) > 0. If no such payo� exists, let d(i) = ∅.
(2)

∑
j∈I, d∈DHθ(d, j) ·R

i
{j},d ≥ αiH

(3) If d (i) 6= ∅, then there exists a punisher ji ∈ I such that: d(ji) 6= ∅ and d(ji)
i
ji
≤ αiH .

Let ζ ∈ ∆(I) be the probability that each player is being asked to stop : ζ(i) = η(d(i), i).

Let (τ ik)i∈I.k=1..∞ be an increasing sequence of stopping times de�ned by induction: τ i01

is the �rst stage n such that Rn = d(i0). τ i0n+1 is the �rst stage m > max
i∈I

(τ in) such that

Rm = d(i0). Observe that in E each τ in < ∞. We now describe the correlation device

DDF = (MDF , µDF ). Let M i
DF

= {1, ..., T̂ + T + 1}, where T ∈ N is su�ciently large, and

T̂ >> T . Let µDF be as follows:

(1) A number l̂ is chosen uniformly over
{

1, ..., T̂
}
.
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(2) The quitter i ∈ I is chosen according to ζ. Player i receives signal l̂.

(3) A number l is chosen uniformly over
{
l̂ + 1, ..., l̂ + T

}
(4) Player ji, the punisher of player i, receives the signal l.

(5) Each other player ĩ 6= i, j such that d
(̃
i
)
6= ∅ receives the signal l + 1.

LetM δ,DF ⊆MDF be the signal pro�les in which some of the players receive an �extreme�

signal: relatively close to 1 or to T̂ +T . That is, if the signal pro�le is inMDF \Mδ,DF then

the probability that player i assigns to player j being the quitter (or punisher) changes

by at most ε when player i receives his signal. If T, T̂ are large enough, we can assume

that µ(Mδ,DF ) ≤ δ
2D
. Now de�ne the following strategy xiF for each player i ∈ I: let mi

be the signal of player i. Player i stops with probability 1 − ε at stages τn that satisfy

n = (mi) mod
(
T̂ + T + 1

)
, and continues in all other stages. Let the canonical correlation

device D = (M,µ), which only depends on |I| and ε, be the Cartesian multiplication:

D =
∏
DF⊆DDDF , and let M ′ = M\∏DF⊆DM δ,DF . Observe that µ (M ′) ≥ 1− δ.

Observe that according to xF the probability of stopping at each stage is strictly

less than 1, thus no �nite history H ∈ H is o� the equilibrium path. This implies that

after any history, the belief of each player over the signal pro�le that the other players

received is derived using Bayes rule. If the players follow the strategy pro�le xF then the

game is absorbed with probability 1 conditioned on E, and the expected payo� satis�es

αiH ≤ wieq. Moreover, if T̂ >> T , then immediately after receiving his signal mi (assuming

m ∈ M ′) no player can infer from his signal whether or not he is the quitter, thus xF is

(δ, ε)-constant-expectation.

We now verify that if T, T̂ are su�ciently large, no player can gain too much by

deviating at any stage of the game conditioned on E and M ′. First, the probability the

quitter i ∈ I correctly guesses the punishment stage is very low, and thus he cannot pro�t

too much by deviating. Similarly, any other player (j 6= i ∈ I) has a low probability of

correctly guessing τ i
l̂
, the stage the quitter stops . Moreover, if T is su�ciently large, then,

with high probability, player j does not know when he receives his signal whether he is

the quitter, punisher or a �regular� player, and he cannot infer which of the other players

is more likely to be the quitter. Therefore, player j cannot earn much by stopping before

stage l̂.

Observe that when the quitter deviates and does not stop, his punisher does not know

that he is a punisher. When the punisher has to stop, he believes (with high probability)

that he is the quitter (assuming m ∈ M ′ and that ε is small enough w.r.t. θ: ∀i ∈ I s.t.

d (i) 6= ∅, θ (i, d (i)) >> ε). This implies that the players ε-best reply at all stages including

when they (unknowingly) punish other players, and that xF is a sequential ε-equilibrium

in G(F,D) conditioned on E and M ′.
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5 Extensions

Our formal model only dealt with �simple� stopping games, which end as soon as

any player stops. We now discuss how to extend our result to more generalized strategic

interactions, such as the leading example.

A generalized stopping game is played as follows. There is an unknown state variable,

on which players receive symmetric partial information along the game. For each player

i, there is a �nite number, Ti, that limits the number of actions he may take during the

game. At each stage, each player i has a �nite set of �stopping� actions Ai. At stage 1 all

the players are active. At every stage n, each active player declares, independently of the

others, whether he takes one of the �stopping� actions in Ai or continues. A player that

has stopped Ti times, becomes passive for the rest of the game and must choose �continue�

in all subsequent stages. The payo� of a player depends on the history of actions and on

the state variable.

A generalized stopping game is di�erent from a stopping game in three aspects: (1) if

no player ever stops the payo� is not necessarily zero; (2) each player has a few di�erent

�stopping� actions (|Ai| > 1); (3) each player may act a �nite number of times (Ti > 1)

until he becomes passive, and when he becomes passive, the game continues with the

other players.

Proposition 14 also holds when each player has a �nite number of di�erent �stopping�

actions, and when the payo� if no player ever stops is di�erent from zero. Thus, with

minor adaptations, our proof is extended to cases (1) and (2).

The third case, where each player may act a �nite number of times, is handled by

using backward induction. The details are standard, and we only sketch here the main

idea. Let m =
∑
i Ti be the total number of times the players are allowed to stop. Assume

by induction on m, that any generalized stopping game where players can stop at most n

times, admits an equilibrium of our type (sequential normal-form correlated approximate

equilibrium with a canonical correlation device). Given a generalized stopping game G′

with m �stops�, we construct an auxiliary stopping game G with the following payo�

process: Ri
S,n is equal to the payo� of player i in an equilibrium of our type of induced

generalized stopping game with total number of stops n− |S| that begins at stage n+ 1,

where the Ti of each player i in S is reduced by one. Such an equilibrium exists due to

the induction hypothesis. By Theorem 10, the auxiliary game G admits an equilibrium of

our type x. x induces an equilibrium of our type x′ in the original game G′ in a natural

way: players follow x as long as all the players continue; as soon as some of the players

stop, the remaining active players play the equilibrium of the induced stopping game with
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fewer �stops�.

Appendix

In Section 4 we presented a simpli�ed version of the coloring scheme that is used in

the construction of the concatenated equilibrium. In this appendix we present the exact

coloring scheme, and show how to adapt Solan and Shmaya (2004)'s methods to give

appropriate lower bounds for the termination probabilities in case (1) of Proposition 14.

A.1 Limits on Per-Round Probability of Termination

In this subsection we bound the probability of termination in a single round of a game

on a tree when an absorbing stationary equilibrium x exists (case (1) of Prop. 14), by

adapting the methods presented in Shmaya and Solan (2004, Section 5) for two players.

A stationary strategy of player i in a game on a tree T is a function xi : V0 → [0, 1];

xi(v) is the probability that player 1 stops at v. Let ci be the strategy of player i that never

stops, and let c = (ci)i∈I . Given a stationary strategy pro�le x = (xi)i∈I , let γ
i(x) = γiT (x)

be the expected payo� under x, and let π(x) = πT (x) be the probability that the game

is stopped at the �rst round (before returning to the root). Assuming no player ever

stops, the collection (pv)v∈V0
of probability distributions at the nodes induces a probability

distribution over the set of leaves or, equivalently, over the set of paths that connect the

root to the leaves. For each set V̂ ⊆ V0, we denote by pV̂ the probability that the path

reached passes through V̂ . For each v ∈ V , we denote by Fv the event that the path

reached passes through v.

The following lemma bounds the probability of termination in a single round when the

ε-equilibrium payo� is low for at least one player. The lemma is an adaptation of Lemma

5.3 in Shmaya and Solan (2004), and the proof is omitted as the changes are minor.

Lemma 18 Let G be a stopping game, n > 0, σ > n a bounded stopping time, H ∈ Hn

a history, and x an absorbing stationary ε
2
-equilibrium in Tn,σ(Hn) such that there exists

a player i with a low payo�: γi(x) ≤ αiH − ε. Then π(ci, x−i) ≥ ε
6
· qi, where qi = qiT =

p
(⋃

v∈Vstop

{
Fv|Ri

{i},v = αiH
})

is the probability that if no player ever stop, the game visits

a node v ∈ V0 with R
i
{i},v = αiH in the �rst round.

T ′ is a subgame of T if we remove all the descendants (in the strict sense) of several nodes

from the tree
(
V, Vleaf , r, (Cv)v∈V0

)
and keep all other parameters �xed. Observe that this
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notion is di�erent from the standard de�nition of a subgame in game theory. Formally:

De�nition 19 Let T =
(
I, V, , r, Vstop, (Cv, pv, Rv)v∈V0

)
and let T ′ =(

I , V ′, V ′leaf , r
′, V ′stop, (C

′
v, p
′
v, R

′
v)v∈V ′0

)
be two games on trees. We say that T ′ is a subgame

of T if: V ′ ⊆ V , r′ = r, and for every v ∈ V ′0 , C ′v = Cv, p
′
v = pv and R

′
v = Rv.

Let T be a game on a tree. For each subset D ⊆ V0, we denote by TD the subgame of

T generated by trimming T from D downward. Thus, all descendants of nodes in D are

removed. For every subgame T ′ of T and every subgame T ′′ of T ′, let pT ′′,T ′ = pV ′′
leaf

,V ′
leaf

be the probability that the chosen branch in T passes through a leaf of T ′′ strictly before

it passes through a leaf of T ′.

The following de�nition divides the histories Hn into two kinds: simple and com-

plicated. A simple history has at least one of the following properties: (1) Every player

receives a negative payo� whenever he stops alone. (2) There is a distribution over the set

of action pro�les in which a single player stops, such that each player receives payo� αiH
when he stops, and approximately this is also his average payo� when other players stop.

De�nition 20 Let G be a stopping game, ε > 0, N0 ≤ n, and τ > n a bounded stopping

time. The history H ∈ Hn is ε-simple if one of the following holds:

(1) For every i ∈ I: αiH < 0. or

(2) There is a distribution θ ∈ ∆(DH × I) such that for each player i ∈ I:
(a) θ(d, i) > 0⇒ Ri

{i},d = αiH . and

(b) αiH + ε ≥ ∑
j∈I, d∈DH

θ(d, j) ·Ri
{j},d ≥ αiH − ε.

H is simple if it is ε-simple for every ε > 0. H is complicated if it is not simple, i.e.:

∃ε0 > 0 such that H is not ε0-simple. In that case we say that H is complicated w.r.t. ε0.

The next proposition analyzes stationary ε−equilibria that yield high payo�s to all the

players. The proposition is an adaptation of Prop. 5.5 in Shmaya and Solan (2004). The

proof is omitted as the changes are minor.

Proposition 21 Let G be a stopping game, N0 ≤ n a number, σ > n a bounded stopping

time, H ∈ Hn a complicated history w.r.t. ε0, ε <<
ε0
|I|·|D| , and for each i ∈ I let

ai ≥ αiF − ε. Then there exists a set U ⊆ V0 and a pro�le x in T = Tn,σ(F ) such that:

(1) No subgame of TU has an ε-equilibrium with a corresponding payo� in
∏
i∈I

[ai, ai + ε];

(2) Either: (a) U = ∅ (so that TU = T ); or (b) x is a 9ε-equilibrium in T, and for

every i ∈ I and for every strategy yi: ai − ε ≤ γi(x), γi(x−i, yi) ≤ ai + 8ε, and

π(x) ≥ ε2 · pTU ,T .
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A.2 Detailed Description of The Coloring Scheme

In Subsection 4.4 we presented a simpli�ed version of the coloring scheme that is used

in the proof of Proposition 17. In this subsection, we present the details of the exact

coloring scheme, which adapts the coloring scheme for two-player games in Shmaya-Solan

(2004). Speci�cally, we provide an algorithm that attaches a color cn,σ(H) and several

numbers (λj,n,σ(H))j for every σ > n ≥ 0 and H ∈ Hn, such that cn,σ(H) is a C -valued

F-consistent NT -function.

A (hyper)-rectangle ([ai, ai + ε])i∈I is bad if for every i ∈ I, αiH − ε ≤ ai. It is good if

there exists a player i ∈ I such that ai+ε ≤ αiH−ε. Let W be a �nite covering of [−1, 1]|I|

with (not necessarily disjoint) rectangles ([ai, ai + ε])i∈I , all of which are either good or

bad. Let B = {b1, b2, ..., bJ} be the set of J bad rectangles inW and let O = {o1, o2, ..., oK}
the set of good rectangles.

Set C = (simple
⋃
allbad

⋃ {1×O}⋃ {2}⋃ {3×W ×W}). LetG be a stopping game,

n ≥ 0, σ > n a bounded stopping time, and H ∈ Hn. If H is simple we let cn,σ(H) =

simple. Otherwise, H is complicated w.r.t. to some ε0(H). In that case we assume w.l.o.g.

that ε << ε0(H)
|I|·|D| . The color cn,σ(H) is determined by the following procedure:

• Set T (0) = Tn,σ(H).

• For 1 ≤ j ≤ J apply Proposition 14 to T (j−1) and the bad rectangle hj =
∏
i∈I

[
aij, a

i
j + ε

]
to obtain a subgame T (j) of T (j−1) and strategy pro�le xj in T

(j) such that:

(1) No subgame of T (j) has a stationary ε-equilibrium with a corresponding payo� in hj.

(2) Either T (j) = T (j−1) or the following three conditions hold:

(a) For every i ∈ I, aij − ε ≤ γi(xj).

(b) For every i ∈ I and every strategy yi: γi(x−ij , y
i) ≤ aij + 8ε.

(c) π (xj) ≥ ε2 × pT (j),T (j−1) .

• If T (J) is trivial (the only node is the root), set cn,σ(H) = allbad; otherwise due to

Proposition 14 and our procedure one of the following holds:

(1) T (J) has a sequential stationary absorbing ε-equilibrium x, with a payo� γ(x) in one

of the good hyper-rectangles. Let cn,σ(H) = (1, ol), where ol is the good rectangle

that includes γx .

(2) T (J) has a sequential stationary non-absorbing equilibrium c, with a payo� 0. Let

cn,σ(H) = (2).

(3) There is a correlated strategy pro�le η ∈ ∆(A) in T (J) that satis�es 3(a)+3(b)+3(c)

in Proposition 14. Let cn,σ(H) = (3, w1, w2) where w1 is the hyper-rectangle that

includes γT (J)(η), and w2 is the hyper-rectangle that includes g(T (J)).

Each strategy pro�le xj, as given by Proposition 14, is a pro�le in T (j−1). We consider it
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as a pro�le in T by letting it continue from the leaves of T (j−1) downward. We de�ne, for

every j ∈ J , λj,n,σ(F ) = pT (j),T (j−1) . By Proposition 16 there exists an increasing sequence

of bounded stopping times 0 < σ1 < σ2 < σ3 < ... such that p (cσ1,σ2 = cσ2,σ3 = ...) > 1− δ
3
.

For every ω ∈ Ω and H = H (ω) ∈ Hσ1(ω), let cH = cσ1,σ2(H).

Let (Aε,j, A∞,j)j∈J ∈
∨

n=1..∞
Fn be A∞,j =

{
w ∈ Ω| ∑

k=1..∞
λj,σk,σk+1

(
Hσk(ω) (ω)

)
=∞

}
is

the event where the sum of the λ-s is in�nite, andAε,j =
{
w ∈ Ω| ∑

k=1..∞
λj,σk,σk+1

(
Fσk(ω)

)
≤ ε
|J |

}
is the event where the sum is very small. As (Aε,j, A∞,j)j∈J ∈

∨
n=1..∞

Fn, there is large

enough N1 ≥ N0 and sets
(
Āε,j, Ā∞,j

)
j∈J
∈ FN1 that approximate A∞,j and Aε,j: (1)

For each j ∈ J , Āε,j
⋂
Ā∞,j = ∅ and

(
Āε,j

⋃
Ā∞,j

)
= Ω. (2) p

(
Aε,j|Āε,j

)
≥ 1 − δ

6·|J | . (3)

p
(
A∞,j|Ā∞,j

)
≥ 1 − δ

6·|J | . From now on, we assume w.l.o.g. that σ1 ≥ N1. Let E
′ be

de�ned as follows (Observe that p(E ′) ≥ 1− δ):

E ′=E\

⋃
j∈J

{
ω ∈ Āε,j|

∑
k=1..∞

λj,σk,σk+1

(
Hσk(ω) (ω)

)
>

ε

|J |

}

⋃
j∈J

{
ω ∈ Ā∞,j|

∑
k=1..∞

λj,σk,σk+1

(
Hσk(ω) (ω)

)
<∞

} .
That is, E ′ is equal to E (de�ned in Subsection 4.4), except that we subtract the errors

in the approximations of (Aε,j, A∞,j)j∈J by
(
Āε,j

⋃
Ā∞,j

)
j∈J

.

A.3 Detailed Proof of Cases 1 and 2 of Proposition 17

In Subsection 4.5 we gave the details of the proof of Proposition 17 only when case = 3.

In this subsection we give the details of the proof for the other cases, which are adaptations

of the proof for the two-player case in Shmaya and Solan (2004). The proof is divided to

5 exhaustive cases according to the color of cH and whether H ∩ Ā∞,j 6= ∅.

A.3.1 There exists j ∈ J and F ∈ H such that F ⊆ Ā∞,j

Let 1 ≤ j ≤ J be the smallest index such that F ⊆ Ā∞,j. Let xj,σk,σk+1
be the jth

pro�le in the procedure described earlier, when applied to Tσk,σk+1
(H). Let xH be the

following strategy pro�le in G (H,D,m): between σk and σk+1 play according to xj,σk,σk+1
.

The procedure of the previous subsection implies the following:

• Conditioned on that the game was absorbed between σk and σk+1 the pro�le xj,σk,σk+1

gives each player a payo�: aij − ε ≤ γiσk,σk+1
(xj) ≤ aij + 8ε.
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• For each player i ∈ I and for each strategy yi in Tσk,σk+1
: (1) γiσk,σk+1

(x−ij , y
i) ≤ aij + 8ε.

(2) πσk,σk+1
(xj) ≥ ε2 × λj(Tσk,σk+1

)

These facts imply that the game is absorbed with probability 1 in E ′, and that xF is a

11ε-equilibrium conditioned on E ′ . Observe that cH = allbed implies that there exists

j ∈ J and F ∈ H such that F ∈ Ā∞,j.

A.3.2 There exists F ∈ H such that F ⊆
(
∩
j∈J
Āε,j

)
and cH = 2

Let xH be the pro�le in which everyone continues. It is implied that no player can

pro�t more than ε by deviating at any stage, conditioned on E ′.

A.3.3 There exists F ∈ H such that F ⊆
(
∩
j∈J
Āε,j

)
and cH = (1, ok) ∈ (1×O)

Let xσk,σk+1
be a stationary absorbing equilibrium in T (J) with a payo� γσk,σk+1

in the

good hyper-rectangle ow:
∏
i∈I [aiw, a

i
w + ε]. As ow is good, there is a player i ∈ I such

that: aiw ≤ αiH − 2ε. Let xH be the following strategy pro�le in GH : between σk and

σk+1 play according to xσk,σk+1
. Lemma 18 implies that π(ci, x−iσk,σk+1

) ≥ ε
6
· qiσk,σk+1

, where

qiσk,σk+1
= p(∃σk ≤ n < σk+1, R

i
i,n = αiF , R

i
i,n ∈ DF ). In E ′, Ri

i,n = αiF in�nitely often and∑
j=1..J

∑
k=1..∞

λj,σk,σk+1
< ε. This implies that under xH the game is absorbed with probability

1, and that xH is a 4ε-equilibrium in G, conditioned on E ′.

A.3.4 There exists F ∈ H such that F ⊆
(
∩
j∈J
Āε,j

)
and cH = (3, w1, w2) ∈ (1×W ×W )

This case was thoroughly presented in Subsection 4.5.

A.3.5. cH = simple

If for every i ∈ I: αiH ≤ 0, then the pro�le in which all the players always continue

is an equilibrium in E ′. Otherwise, the fact that cH = simple implies that there is a

distribution θ ∈ ∆(DH × I) such that for each i ∈ I: (1) θ(d, i) > 0 ⇒ Ri
{i},d = αiH . (2)

αiH + ε ≥ ∑
j∈I, d∈DF

θ(d, j) ·Ri
{j},d ≥ αiH − ε. In this case, one can use a procedure similar to

the one described in Subsection 4.5, to construct a sequential ε-equilibrium in G(H,D,m)

conditioned on E ′ and M ′.
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