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Abstract

We show that the value of a zero-sum Bayesian game is a Lip-
schitz continuous function of the players’ common prior belief, with
respect to the total variation metric on beliefs. This is unlike the case
of general Bayesian games, where lower semi-continuity of Bayesian
equilibrium (BE) payoffs rests on the "almost uniform" convergence
of conditional beliefs. We also show upper semi-continuity (USC) and
approximate lower semi-continuity (ALSC) of the optimal strategy
correspondence, and discuss ALSC of the BE correspondence in the
context of zero-sum games. In particular, the interim BE correspon-
dence is shown to be ALSC for some classes of information structures
with highly non-uniform convergence of beliefs, that would not give
rise to ALSC of BE in non-zero-sum games.
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1 Introduction

Bayesian games describe situations where there is uncertainty about the play-
ers’ payoffs, and the players may have different private information about the
realized state of nature that affects the payoffs. Being a natural framework
for modelling numerous real world issues, it has been a subject of exten-
sive investigation in the literature. In particular, the question of continuity
of Bayesian equilibria (BE) with respect to changes in players’ information
endowments received notable attention.

Rubinstein’s (1989) example of electronic mail game had demonstrated
that seemingly "small" deviations from common knowledge of the payoffs in
a game may produce big differences in BE payoffs and strategies. However,
these deviations do not lead to approximate common knowledge of the payoffs
in the sense of Monderer and Samet (1989), who show that approximate
common knowledge of the payoffs with high ex-ante probability, guarantees
existence of BE similar to the BE in the limit case of commonly known
payoffs.

Among other repercussions, these developments reinvigorated the strand
of research (to which the present paper also belongs) that studies the effects
of small changes in players’ common prior belief' on BE. In an earlier work,
Milgrom and Weber (1985) showed upper semi-continuity (USC) of the BE
correspondence with respect to the common prior, under a very general con-
dition requiring that the common prior be sufficiently "spread-out" on the
product of players’ types. This condition is satisfied trivially in the important
case where each player has at most countably many types, which is equivalent
to assuming that his private information is given by a countable partition of
the space of states of nature.? In this latter framework, the works of Kajii
and Morris (1994, 1998)) and Engl (1995) are particularly noteworthy.

Engl (1995) investigated (approxzimate) lower semi-continuity ((A)LSC)
of the BE expected payoff correspondence, under the uniform setwise conver-
gence topology on priors. The ALSC means that for any BE in a game and
any € > 0, there is an e-equilibrium with close expected payoffs in the same

'Even with small changes in the common prior belief, common knowledge of the payoffs
may be lost, even in the approximate sense. It was shown by Kajii and Morris (1994); their
example is an elaboration on Rubinstein’s (1989) electronic mail game, and it is repeated
in Example 3 here.

2This is the set-up in both Rubinstein (1989) and Monderer and Samet (1989).



game, for any close enough common prior.> Engl (1995) showed that the BE
expected payoff correspondence is ALSC, assuming that the approximating
e-BE are with respect to ez-ante expected utilities. However, if players evalu-
ate the consequences of their strategic choices at the interim stage, following
the receipt of private information, they are in fact concerned with their in-
terim expected utility, that takes into account their private information and
is based on the correspondingly updated prior belief. But while ex-ante and
interim BE are the same, this is not true for the approximate, e-BE, since an
ex-ante e-best response may be hugely suboptimal for some realizations of the
player’s private information, albeit with small probability. Kajii and Morris
(1994, 1998) showed that, if the approximate e-BE are taken in the interim
sense, ALSC of the BE expected payoff and strategy correspondences may
fail if priors are converging only setwise. They showed that to obtain ALSC
of the interim BE expected payoff correspondence, uniform across bounded
games, it is necessary (and sufficient) to additionally assume almost uniform
convergence of beliefs conditional on players’ private information (i.e., that
the closeness of conditional beliefs becomes approximate common knowledge
with high ex-ante probability).

In this work we consider zero-sum Bayesian games. These games recently
came into spotlight, particularly in the context of characterizing the value-
of-information function (see, e.g., Lehrer and Rosenberg (2006, 2007)). We
start by showing that the value of a zero-sum game is a Lipschitz continuous
function of players’ common prior belief, with respect to the total variation
metric on the set of priors; see Theorem 1. (This metric induces the setwise
convergence topology on priors.)

Although being in line with Engl’s (1994) result on the ALSC of the
ex-ante BE expected payoff correspondence, Theorem 1 implies a previously
unnoticed fact. Since pairs of optimal strategies are both interim and ex-ante
BE in a zero-sum Bayesian game, and the value (=the expected BE payoff) is
a continuous function of the common prior, the interim BE expected payoff
correspondence is in fact LSC (and in particular ALSC) when restricted to
zero-sum games. Thus, the assumptions of Kajii and Morris (1998) on the
convergence of conditional beliefs, which are necessary for ALSC in the non-
zero-sum setting, are not needed in the context of zero-sum Bayesian games.

3The stronger notion of lower semi-continuity (LSC) requires that the BE expected
payoff be approximable by expected payoffs of exact BE in games with close enough
common priors.

4Bayesian zero-sum games were explicitly mentioned in Kajii and Morris (1997) in the
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Theorem 1 bears semblance to another uniform continuity result for the
value of zero-sum games, in Einy et al (2008), which was established in
a different setting: the common prior of the players was fixed, but their
information fields were variable (as in Monderer and Samet (1996)), and the
set of fields was endowed with the Boylan pseudo-metric. This result does
not imply Theorem 1, however, as the latter deals with variable common
priors.

We further show that the optimal strategy correspondence is both USC
(Proposition 1) and ALSC (Proposition 2) with respect to the total variation
metric on priors. Since optimal strategies are both ex-ante and interim BE
strategies in zero-sum Bayesian games, Proposition 1 implies that the ex-ante
and the interim BE correspondences are USC.? However, the notion of ALSC
uses e-optimal strategies to approximate the given optimal strategy, and e-
optimal strategies are defined with respect to the ex-ante expected payoffs in
the game. Thus Proposition 2 implies that the ex-ante BE correspondence
is ALSC in zero-sum Bayesian games, but it sheds no light on the ALSC of
the interim BE correspondence in these games.

As was mentioned, the interim BE correspondence may not be ALSC with
respect to the total variation metric on priors, in cases where conditional be-
liefs do not converge almost uniformly (see Kajii and Morris (1994)). Our
last two results show that, at least in some circumstances, the interim BE
correspondence is ALSC in zero-sum Bayesian games without any assump-
tions on the convergence of conditional beliefs. Proposition 3 identifies one
such instance in games where each player has an infinite information parti-
tion; the main assumption is that the knowledge of the player’s own type
allows him to guess the type of the other player while making a bounded
error. To contrast this with the non-zero-sum case, we recall in Example 3
a non-zero-sum Bayesian game constructed in Kajii and Morris (1994), with
information partitions of the type admitted by Proposition 3, and even with

context of robustness to incomplete information (of the equilibrium payoff in the complete
information game), under the assumption that each player has a unique optimal strategy;
see Proposition 3.2 and the paragraph following it in that paper. However, the aim here
is to highlight the LSC of the interim BE expected payoff correspondence for all zero-sum
games with incomplete information.

’The BE correspondence is, in fact, USC for general Bayesian games in our setting,
although Proposition 1 is stated only for zero-sum games (being concerned with USC
of optimal strategies). This is suggested, but not implied, by the general USC result of
Milgrom and Weber (1985), which is established in a somewhat different framework.



common knowledge of payoffs in the limit of a converging sequence of com-
mon priors, for which the interim BE correspondence is not ALSC. Finally,
when at least one of the players has a finite information partition, ALSC
of the interim BE correspondence obtains without further assumptions, see
Proposition 4.

The paper is organized as follows. The setup is described in section 2 and
our results are stated and proved in section 3.

2 Preliminaries

2.1 Zero-Sum Bayesian Games

We consider zero-sum games with two players, ¢ = 1,2. Games are played in
an uncertain environment, which affects payoff functions of the players. The
underlying uncertainty is described by a probability space (€2, F, i) , where
is a set of states of nature, F is a o-field of events in (2, and y is a countably
additive probability measure on (€2, F) that represents the common prior
belief of the players about the distribution of the realized state of nature.
The information endowment of player i is given by an (at most) countable
and F-measurable partition IT° of Q. Given w € €, denote by IT’ (w) the
element of the partition IT* that contains w. If w was realized, player i only
knows that the realized state of nature belongs to IT* (w) .

Each player ¢ = 1,2 has a set S° of strategies, which is a convex and
compact subset of a Euclidean space®. Additionally, there is a measurable’
real valued payoff function u : Q x S* x S? — R. At every state of nature
w e Q, u(w, s, s?) is the payoff received by player 1, and —u (w, s*, s?) is the
payoff of player 2, when each player i chooses to play s*. We assume that,
at every w € 2, each player’s payoff is continuous and concave in his own
strategy; that is, u (w, -, s?) is continuous and concave for a fixed s* € S?, and
u (w, s',-) is continuous and convex for a fixed s* € S'. We further assume

6All our results, with the exception of Proposition 3, use only the fact that S? is
a compact and metrizable subset of a topological vector space. For Proposition 3, the
assumption of S* being a Banach space, not necessarily of finite dimension, would have
sufficed. We, however, confine ourselves to the finite-dimension framework, so as to avoid
unnecessary generality.

"The measurability is with respect to the o-field F in the first coordinate, and with
respect to the Borel o-fields in the second and third coordinates.



that |u| is bounded on £ x S x 5% by some M > 0 (Remark 1 below explains
the necessity of this assumption).

The probability space (€2, F,u), information endowments IT' and TI?,
strategy sets S' and S2, and the payoff function u fully describe a zero-sum
Bayesian game. To concentrate on the effects of changes in the common prior,
we keep all the attributes of the game fixed henceforth, with the exception
of p € A(Q,F) =the set of all countably additive probability measures on
(Q,F). For any pn € A (2, F), the associated zero-sum Bayesian game will
be denoted by G(u).

A Bayesian strategy of player i is a II*-measurable function z* : Q — S?,
i.e., 2 is constant on any ¢ € II*. The set of all Bayesian strategies of player
i will be denoted by X’. Clearly, X’ can be identified with the function

space (Si)HZ , which is convex and compact in the product topology, and also
metrizable in it since II' is at most countable. Given u € A (Q,F), the
expected payoff of player 1 (and the expected loss of player 2) when 2% € X*
is chosen by ¢ = 1,2 is

Uu(at,2%) = /Qu (w, 2" (w), 2* (w)) dp (W) .

Remark 1. In order for the expected payoff function U, to be well
defined for a given p € A (Q, F), p-integrability of an F-measurable

f(w) = sup ‘u (w, st 32)|
(s1,s2)eS1xS2
would have sufficed, without the need to assume uniform boundedness of
u as we did earlier. However, since our interest lies in changing common
priors in the game with a fixed utility function, f needs to be integrable
with respect to all p € A(,F). This, in fact, implies the existence of
M =sup,cq f (w) < 0.

With our assumptions on u, the expected payoff function U, is continuous
and concave in 2! € X! for a fixed 22 € X?, and continuous and convex in
r? € X? for a fixed ' € X' (the continuity is implied by the bounded
convergence theorem). Thus, Sion minimax theorem (see, e.g., Theorem A.7



in Sorin (2002)) guarantees existence of the value v(u) in each game G(u):
the following inequality holds,

min max U,(z',2?) = max min U, (2", 2?), (1)
z?2eX? rleX! zleX! 22eX?
and v(u) is defined as the common value of the two expressions in (1).
Given ¢ > 0, 7 € X! is called e-optimal for player 1 in G(u) if

Uu(@',2%) > v(p) — ¢

for any 22 € X?. Similarly, 7% € X? is called e-optimal for player 2 in G(u)
if
U 7)< () + =

for any 2! € X!, If a strategy z° is 0-optimal for player i, it is called optimal
for i. The set of e-optimal strategies of player i in G(u) will be denoted
by O (u). It is convex and compact. The notation for Of (1), the set of
optimal strategies, will be simplified to O (11). Since the value exists, O ()
is a non-empty set for any € > 0.

Optimality of a strategy is closely related to the concept of equilibrium.
A pair (z',7?) € X! x X? is called an ez-ante Bayesian e-equilibrium (hence-
forth e-EBE for short) if

Uu(@',3%) 2 Uy(a',3%) —¢ (2)
for any ' € X!, and
Uu(3',3%) < Uu(3',2%) + ¢ (3)
for any 22 € X2 Denote by EBE. (u) the set of all e-EBE in G(u), and
simplify FBFEy (i) to EBE (u). If (z',2%) € EBE (i), we will call it an
ex-ante Bayesian equilibrium (EBE for short).
Remark 2. Note that, for every € > 0,

O (1) x O% () C EBE;. (1)

and
EBE, (11) C Oy, (1) x O3, ().



In particular,
O' (n) x O% (n) = EBE (),

and the value v(u) is the unique EBE payoff (to player 1) in the game G(u).

Example 1 (Matrix Bayesian Game). Assume that each player i has

n; pure strategies, and S is the (n; — 1)-dimensional simplex of 7’s mixed

strategies. Assume further that in each w € 2, the payoff function is given
by

u(w,s',s?) = s'A(w)s?, (4)

where strategy s! € S! is regarded as a row vector, s> € S? — as a column
vector, and A(w) is an n; X ng-matrix, with A(w);x being the payoff of player
1 when he chooses pure strategy j and 2 — pure strategy k, which is uniformly
bounded across 2. Then the strategy sets of players and the payoff function
satisfy all the conditions listed above, and the associated zero-sum Bayesian
game is amenable to our analysis.

2.2 Interim Expected Payoffs

The notions of the value of a game, and of the optimality of strategies, are
defined with respect to players’ ex-ante expected payoffs. In other words,
players are assumed to evaluate their utilities before any private information
is revealed. However, they may conceivably want to evaluate the conse-
quences of their strategic choices at the interim stage, following the receipt
of private information. In other words, players may be concerned with their
interim expected payoff, that takes into account their private information
and is based on the appropriately updated prior belief.

To formalize the discussion, let € A (2, F). Forany w € Q and i = 1,2,
denote by IT° (w) the element of partition IT° that contains w. If p (T (w)) >
0, denote by figi(,) € A(Q,F) the conditional belief of player i, given his
information at w, i.e., for any A € F,

Lo H(ANTE ()
Py (A) = p (A 1T (w)) = —————. 5
o (4) = (4] I () = 220 )
The function Uuni(w>(" -) will be referred to as the interim expected payoff
given IT' (w) .



For ¢ > 0, a pair (z',2%) € X! x X? is called an interim Bayesian &-
equilibrium (henceforth, e-IBE for short) in G(u) if

Uﬂnl(w) (f]-? /‘Q:\Q) 2 UM

(¢1,7%) —¢ (6)

1 ()
for every z! € X! and every w € Q with u (IT* (w)) > 0, and

U, (z',7%) < U,

P2 (w)

H2(w) (53\17 a’;z) + € (7)
for every 2% € X? and every w € Q with p (I1? (w)) > 0. Denote by I BE. (u)
the set of all e-IBE in G(u), and simplify IBFEq (1) to IBE (u) . If (z1,7?) €
IBE (1), we will call it an interim Bayesian equilibrium (IBE for short).

Remark 3. When ¢ = 0, there is no distinction between IBE and EBE.
Definitions embodied in (2), (3) and (6), (7) are equivalent, as are indeed
the notions of IBE and EBE in general, non-zero-sum, games. Accordingly,
neither the value of a zero-sum Bayesian game (viewed as the ex-ante payoff
in an IBE) nor the optimal strategies (viewed as IBE strategies) need not be
redefined in the interim expected payoffs setting.

Remark 4. When ¢ > 0, the definition of ¢-IBE is significantly more
demanding than that of e-EBE. Although any e-IBE is in particular an e-
EBE, i.e., IBE. (1) C EBE. (i), as follows from integrating both sides in
(6) and (7) over €2, the opposite is not true. In terms of the interim expected

payoffs Uy, (-+), the definition of (z',2%) € EBE. (i) implies that
Ui o, (@ 77) = Uy, (@7, 77) — L (T (@) (8)

for every 2! € X! and every w € Q with p (IT' (w)) > 0, and

p (I (w))

for every x? € X? and every w €  with u (I1? (w)) > 0. This indicates that
although an -EBE strategy 7' is ex-ante an c-best response against 77, it
may be hugely interim-suboptimal in states of nature w with low probability
w (TT* (w)), thereby failing to be an &’-IBE strategy for all sufficiently small
e’. (See, e.g., Example 2 in section 3.3.)

U,

MHQ(w) (@\17%2) < U (/3’/'\1’1'2) +

— THm2w)

9)

9



2.3 Topology on Common Priors

Consider the total variation metric d on A (Q, F), given by
d(p, 1) = sup |u(E) — i/ (E)| (10)
EeF
for any p, ' € A(Q,F).

The following lemma shows that the expected payoft U, is a Lipschitz
function of y with respect to d, for a fixed (2!, 22) € X! x X2

Lemma 1. For any (z',2%) € X' x X% and p, i’ € A(Q,F),

(", 22) = Uy (e, 2)| < 2Md(ys )

Proof. For any pu, i’ € A(Q,F),

sup / f @) d (i — 1) (w) = 2d(ye, 1), (11)

where the supremum is taken over all F-measurable functions f : Q — [—1, 1]
(see, e.g., Lemma 1 on p. 360 in Shiryaev (1996)). Given any (z',2?) €
X! x X2 note that, by the boundedness of u and (11),

Ut 22) = Up(a,a%)] =

/Qu (w, a:l(w),x2(w)) dp (w)
_/Q“ (w, 2" (W), 22(w)) dit’ (w)

(ot w) di i) @)
< 2Md(p, ).
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3 Results

3.1 Continuity of Value

Our main result establishes Lipschitz continuity of the value:

Theorem 1. The value v(p) is a Lipschitz continuous function of p with
respect to the metric d: for any p, ' € A(Q,F),

(i) = v(p)] < 2Md(p, p'). (12)

Proof. Let 2! € O'(u) and 22 € X%, The optimality of &' in G (u)
and Lemma 1 imply that

UM'(ilaxZ) Uu(fjl,x?) o 2Md<,ua,u/)

>
> o(p) —2Md(p, 1').

This holds for every 22 € X2, and hence it follows that

v = max min, Uv(a’,o) (13a)
> in U.. ~1 2
-
> w(p) — 2Md(p, ). (13b)

Similarly, starting with 22 € O? (1) we obtain

(i) = min, max Uy(a',2%) (14a)
< max Uy (e, 3%)
< o(p) +2Md(p, 1) (14b)

The combination of (13) and (14) yields (12). O

Theorem 1 implies, in particular, that the single-valued EBE (or, equiv-
alently via Remark 3, IBE) expected payoff correspondence is both lower
and upper semi-continuous with respect to the total variation metric on the

11



common prior, when restricted to zero-sum Bayesian games. This stands in
contrast to the general, non-zero-sum case. As was shown by Kajii and Mor-
ris (1998), IBE payoffs in a non-zero-sum Bayesian game G(x1) may be quite
far from e-IBE payoffs in G() for all small enough ¢ > 0, even if d(u, ') is
arbitrarily small, when the beliefs conditional on each player’s private infor-
mation do not converge uniformly. But, in the zero-sum case, the IBE payoff
in G(p) is approximated by the exact IBE payoff in G(y') (not merely an
e-IBE payoff) when d(u, 1) — 0.

3.2 Upper Semi-continuity of Optimal Strategies

Otimal strategies too have strong continuity properties with respect to the
total variation metric on the common prior, as we will see in this and the next
subsection. Given a sequence {u,}.-, C A (Q, F) such that lim,, . 1, = p,
we say that the optimal strategy correspondence is upper semi-continuous
(USC) along { s, } -, if the following holds: for any player ¢ and any sequence
{237 C X' such that lim, . 2! = 2} and 2! € O (u,) for each n > 1,

iy € O (o).

Proposition 1. The optimal strategy correspondence is USC along any
convergent sequence {p,}°—, C A(Q,F).

n=1

Proof. Let {u,}>7, C A(Q,F)and {2}, C X' besuch that lim, . 1, =
o, limy, oo 2% = 2%, and &% € O (u,,) for each n > 1. We will assume i = 1,
the case of i = 2 being analogous. Take any 22 € X?. By assumption, for
any n > 1

Uy, (4,2%) 2 v(11,). (15)
Using Lemma 1, we obtain
‘Uﬂn (irlwxg) - U,uo (i(1)7$2)|
U, (s 2%) = Upy (3, 2°) | + Uy (3, ) = U, (5, 2%) |
2Md(ﬂm IUO) + |U#o (*@7117 332) - U,uo (‘f:(l)ﬂ $2)| )

VARVAN

and thus
lim U, (Z,2%) = lim U, (&,,2%) = U, (%, 2?)

n—o0 n—oo

12



by continuity of U, in the first variable. Now, taking the limits of both sides
in (15) and using Theorem 1 yields

Uﬂo (‘%67 372) > U(UO)'

Since this holds for every 2% € X2, i} € O (). O

Since O (1) x O? () = EBE (u) for every u € A (2, F), as was men-
tioned in Remark 2, Proposition 1 shows that the EBE correspondence (and,
equivalently by Remark 3, the IBE correspondence) is USC in zero-sum
Bayesian games. In fact, this is true for general Bayesian games in our
set-up, as can be easily seen.®

3.3 Approximate Lower Semi-continuity of Optimal Strate-

gies, EBE, and IBE

Defining lower semi-continuity of the optimal strategy correspondence re-
quires some care. Its straightforward version will not work: given {1, } -, C
A (Q, F) with lim,, . i, = po and ) € O" (1) , we may not be able to find
a sequence {2} C X' such that lim, .. 2% = &} and & is optimal in
G (p,,) for each n > 1. Indeed, even in a simple decision problem (i.e., a one-
player game) not all payoff maximizers may be approximable by maximizers
in nearby problems. Thus, the appropriate notion of lower semi-continuity
of the optimal strategy correspondence with respect to the common prior is
the following. We will say that the optimal strategy correspondence is ap-
prozimately lower semi-continuous (ALSC) along a sequence {u,} -, with
lim,, oo i1, = fi if the following holds: Given any Z} € O (u,) for some player
i, and any £ > 0, there exists a sequence {2/} - | C X" with lim,,_, &, = &},
such that ¢, is (merely) e-optimal in G (p,,) for every n > 1.

Similarly, the EBE (respectively, IBE) correspondence is defined to be
ALSC along a sequence {y,} -, with lim, . i, = g, by the requirement
that, given any (#',2%) € EBE (u,) (respectively, IBE (y,)) and any € > 0,

there exists a sequence {(z},22)} 7, C X' x X? with lim, . (2},42) =

8Milgrom and Weber (1985) have a very general result on USC of the BE correspon-
dence for general Bayesian games, but in a somewhat different framework.
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(23, 22), such that (21,42) € EBE. (u,) (respectively, IBE. (u,,)) for every
n>1.

It follows from the next proposition that the optimal strategy correspon-
dence is ALSC, with the sequence {Z!} | being the strategy &{ itself:

Proposition 2. For every pu,p’ € A(Q,F) and every i = 1,2,

Oi (M) - OiMd(,u,,u’) (/‘L,) :

Proof. As in the proof of Proposition 1, we will only consider the case
ofi =1. Fix any u € A (Q,F) and let ! € O' (). By Lemma 1, optimality
of #', and Theorem 1, for any 22 € X? and any ' € A (Q, F),

Up(2',2%) > Uu(3',2%) — 2Md(u, i)

> o(p) —2Md(p, 1)
> o(p) —AMd(p, 1)

This shows that 2! is indeed 4Md(u, p')-optimal for player 1 in G(y'). O

According to Proposition 2, if lim,,_, pt,, = p1o then, for a given € > 0, any
2% which is optimal in G (1) is also e-optimal in G(y,,) for all sufficiently large
n. However, while optimality of a strategy has an interpretation in terms of
both ex-ante and interim expected payoffs (since O' (1) x O? (1) = EBE (p)
= IBE (1), by Remarks 2 and 3), this is no longer so with e-optimality which
is a purely ex-ante concept (as expounded in Remark 4). Thus, although
Proposition 2 trivially implies that the EBE correspondence is ALSC? along
any converging sequence {/, }o-, (since EBE (1) = O (uy) X O? () and

n=1

EBE. (u,) D (’)% () X (9% (i) by Remark 2), it remains mute on IBE.
And indeed, a pair (#',2%) € O (uy) x O? (1y) = IBE (1) may fail to be
in IBE. (i1,,) for all n > 1 and all small enough ¢ :

Example 2. Let Q = Z, (the set of non-negative integers), S* = [0, 1],
S2={0}, ' =112={{2n,2n + 1} : n € Z, }, and, finally,

u (w,sl, 32) _ { — (81)2, if w is odd,

0, is w is even.

9This is, in fact, well known even for general Bayesian games, due to Engl (1995).
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If 41, is a probability measure with the full support on {2n : n € Z, }, then,
clearly, #} () = 1 is an optimal strategy of player 1 in G(u,). Consider,
however, a sequence {yu,} -, of probability measure, such that, for every
n, i, is identical to u, on all subsets of Q\ {2n,2n + 1}, but u, ({2n}) =

i, ({20 +1}) = sto ({2n}) . Then clearly limy, o0, = ptg, but (ig,0) ¢
IBE. (u,) for every n > 1 and all € € [0, 3).

However, the failure of some (i}, 22) € IBFE (p,) to be in IBE. (p,,) for
all small enough € > 0, does not rule out that the IBE correspondence is
ALSC: it does not preclude the possibility that (&}, 43) is approzimable by
a sequence { (&}, 22)}>° | with (2},22) € IBE. (u,) for each n > 1. Indeed,

n’ n n’ n

the IBE (2, 0) in Example 2 is the limit of the sequence {(z%,0)} ", , where
3L ({2k,2k +1}) = 16 liff’ﬁ " forall k € Z,, and {(&,0)}>°, are
e-IBE (and even IBE) in {G(u,)},~, . But is the IBE correspondence ALSC
in general zero-sum Bayesian games7

This is, at present, an open problem. However, we will show that the the
IBE correspondence is ALSC in zero-sum games, with information structures
belonging to a certain interesting class, for which the ALSC property would
have failed had the games been non-zero-sum. We start by recalling the
following example, due to Kajii and Morris (1994), showing that the IBE
correspondence in non-zero-sum Bayesian games is not ALSC with respect
to the total variation metric on A (Q,F) :

Example 3 (Kajii and Morris (1994), Section 4.2). This is an elab-
oration of the coordinated attack problem in the computer science literature,
and an electronic mail game of Rubinstein (1989); for a more methodical
and detailed presentation of the example the reader is referred to Kajii and
Morris (1994). Let Q = Z,x Z,, S' = S? = [0,1], and assume that each
player i can discern only the i'" coordinate in each state (t1,¢%) € Q, i.e.,
that IT' ((¢',¢%)) = {t'} x Z, and IT* ((¢*,¢?)) = Z, x {¢*}. Furthermore, let

i ({0.001) = 5., ({0.0)1) = (5) 0", g, (B, B)}) = (5)™ (1= ")
and p, ({(k,k+1)}) = (3 )%Jr1 (1 —a™) for all k > 1, where a" —,, ., 0;
and let p, ({(t',t*)}) = 0 for all other (¢',#?) € Q. The limit measure,
o = limy, oo p1,., i thus given by 1o ({(0,0)}) = 5, o ({(k. B)}) = (1)™",
po ({(k, k+1)}) = () for all k > 1, and y1o ({(#1,2)}) = 0 otherwise.

2
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In each state of nature (t!,¢?), strategy s' € [0,1] is the probability of
choosing pure strategy Sa fe from the binary set of pure strategies { Dangerous, Safe} .
In each (t!,t?) € Q where ¢! = 0, the pure strategy payoffs are given by

Dangerous  Safe
Dangerous (—10,—10) (—10,1)
Safe (1,-10) (1,1)

and, when t! # 0, by

Dangerous  Safe
Dangerous (2,2) (—10,1) .
Safe (1,-10) (1,1)

Kajii and Morris (1994) show that an IBE in the non-zero-sum Bayesian
game G/(1,), where both players play Safe when it is (commonly) known
that t' = 0 and Dangerous otherwise, is far from all e-IBE in {G(p,,)}2, |
for all sufficiently low values of €, and in all non-zero states of nature (in
fact, they show that even IBE payoffs are far apart). What is at fault in that

example is a non-uniform (across 2) convergence of prior beliefs conditional

on players’ private information (i.e., of measures <(un)ni (“’))izl,z;weﬂ)’ which

occurs despite that lim, ... i, = po in the total variation metric (see also
Example 2 above). More precisely, the problem lies in the lack of almost
uniform convergence of conditional beliefs, which is defined, roughly speak-
ing, by the requirement that the closeness of conditional beliefs becomes
approximate common knowledge with high ex-ante probability.'?

We will show in our next Proposition 3 that the (almost) uniform conver-
gence of conditional beliefs mentioned in Example 3 is by no means necessary
for the IBE correspondence to be ALSC in zero-sum Bayesian games. The
proposition makes certain assumptions on the support of {p,}.-, (that are
satisfied, e.g., by the information structure in Example 3). But, contrary to

10The notion of almost uniform convergence of conditional beliefs is defined and ex-
pounded upon in Kajii and Morris (1994), where they also show (on p. 19) that it is not
satisfied in this example. We do not attempt to give a formal definition here, since this
would require a lengthy digression, and this notion’s relevance is primarily for the issue of
IBE ezpected payoff continuity in general (non-zero-sum) games, which is not our focus.
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the case in Example 3, in zero-sum Bayesian games these assumptions guar-
antee ALSC behavior along {s, } - ,, without any additional requirement on
the convergence of conditional beliefs.

Before we state Proposition 3, the following convention is in order. For

each ¢ = 1,2, we will write the elements of the (at most countable) partition
[T as an indexed sequence {7r§ };F;O , where T" € {00} UZ,. When i’s private
information is given by 7r§ (i.e., when the realized state of nature w is such

that II' (w) = 7%), the index j of 7% may be referred to as the type of player
1.

Proposition 3. Let {u,},—, C A(Q,F) be such that lim,_, p, = po,

and assume that in zero-sum Bayesian games {G (1)}~ :

(Y) there exists C' > 0 such that, for every w € Q, the payoff function
u(w,+, ) is Lipschitz continuous with a constant C with respect to the Fuclid-
ean norm on S' x S

(IT) T' = T? = oo, and there exist functions t',t* : Z, — Z, with
lim,, o min(¢', ) (n) = oo, and integers K, L > 0 such that, for every i =
1,2:

(a) pg (ﬂ;) > 0 for every j > 0;
L

(b) if j < L, the measure (No)w;i has a support on the set U m, "', where
k=0

—1 denotes the rival of player 1.

and

(c) for every n >0, if j > L and p, (7) > 0 then the measure ()

J 7T§.
L £+ K
has a support on the set U W];i U U W];i.
k=0 k=t?(j)

Then the IBE correspondence is ALSC along {p,}, - -
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Note that assumption (I) is implied by the uniform boundedness of u
if {G(p,)},—, are Bayesian matriz games (see Example 1). Assumptions
(ITb,c) mean that although player i may be unsure of the type of his rival—i,
given the knowledge of his own type he knows that —i’s type is either very
low (not exceeding L) or can be estimated via the function ¢* with an error
of at most K. This assumption is satisfied by the information structure in
Example 3 above.

Proof of Proposition 3. Let {yu,} -, C A(Q,F) be a sequence satis-
fying all the assumptions. Fix (&},22) € IBE (110) and € > 0.We begin with
the following notation. For any n > 0, denote by G’ (i,) an auxilliary game
that is identical to G (i,,), in all but the following aspect: the strategy-set

X" of player i in G’ (11,,) is the subset of X" consisting of all strategies that
L

coinside with Z} on U mi. The notions of (e-)optimal strategies of player i,

k=0

(e-)EBE, and (e-)IBE are defined for G’ (u,,) in the same way as for G (u,,),
bearing in mind the constraint on strategies, and their (non-empty, by our
assumptions on the game) sets will be denoted by O (p,,), IBE’ (u,,) , and
IBE! (p,,) , respectively. The subindex will be droped if ¢ = 0. Note that
Remarks 2, 3, and 4 hold in their enterity if the sets O (u,,) , IBE. (u,,) , and
IBE. (p,,) are replaced by their "tagged" counterparts, O (u,,) , IBE. () ,
and IBE! (u,), respectively; we will refer to the "tagged" versions of the
remarks as Remarks 2’, 3’, and 4’.

Consider now a sequence {(7%,72)} -, C XY x X? such that (},72) €
OY(u,) x O¥ (u,) for each n > 1. Let

3

8CK? (maxgiegn [|s']] + maxees: [|s?]])°

where ||| denotes the Euclidean norm on both S and S?. Define a sequence
{(5;75,5275)}7?:1 C XY x X? as follows: for everyn > 1,7 =1,2,and j > L,
set
fﬁm (71'3) =max (1 —46(j — L),0) -7} (71';) +min (6(j — L),1) - 4" (w;) (17)
L
(recall also that each T} ; € X" coinsides with Z{ on U mi and hence,
k=1
when j < L, @ ; (n%) = &} (7%)). Thus (T} 72) is a state-dependent
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mizture of (3, 23) with (7}, 72) , with the property that =, ; (%) is gradually

transformed from 7 (%) into 7, (7*) when j moves from L to'' L+ [3] +1.
We claim that (z), 5,72 5) € IBE. (,) for each sufficiently large n. We

n

will only show that there exists N (4) > 0 such that

U(/"‘n)ﬂ-l, (Erlz,a?fi,&) = U(un)ﬁl (37175721,5) —¢ (18)
J J

for every x! € X', every j > 0, and every n > N (4). It could then be

established similarly that

U(/’Ln)ﬂ.? (5711,67 fi,&) S U(#n),r? (5711,6’ xz) +e€ (19)

for every 22 € X?, every j > 0, and every n > N (4), and thus (6) and (7)
in the definition of e-IBE will follow.

Since lim,, ., min(¢!,#?) (n) = oo, we can find an integer J (§) > L +
[1] + 1 such that, for all j > J(6) and i = 1,2, t(j) > L+ [1] + 1. Given
a2t € X!, consider the following three cases.

Case 1: j > J(0). Note that, by (17) and the choice of J (d), Z,, 5 (w) =
tHG)+K
Uy, (w) for every w € 7} and T 5 (w) = 7x (w) for every w € U 72, Thus,
k=t'(5)
by assumption (Ilc),

Uty @nss T 5) = Uty (U, Uir) (20)

xl 1
J J

and
Uty (@, T 5) = Ugp,y (21, 75). (21)

wl
J J

But (7%,52%) € OV (u,,) x O (u,) = IBE' (1)) (see Remarks 2’ and 3’). This
fact and (20), (21) imply (18) for z* € XV. But since any 2! € X! is identical
to some z' € X" when restricted to 7}, (18) in fact holds for all 2' € X7,
and every n.

Case 2: L < j < J(6). Denote

Ty = max (1 —6(j — L),0) - 74 + min (3(j — L), 1) -

n

"Henceforth, [+] will stand for the integer part of .
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and
§i75zmax(1—5(t1 (j) —L),0) -i‘%—i—min(é(tl(j)—[/),l) T

(note a subtle but important difference between 7, ; and 7, a:n s — in the for-
mer the coefficients in the convex combination are state- dependent, while in
the latter they are not). It follows from the definition of 7, ; and %;75 and
assumptions (I) and (II) that

— . =1 =2
‘U(Mn)ﬂ.]l_ (%11,57 xi,a) - U(un)w;_ (%,57 ﬂfn,a)

(by assumption (Ilc))

L

< 2_: /7T1n7r2 u(w, T, 5(w), 7o 5 (w) —u <W,§711,5(w),§n75 (w)) ‘ d () 1 ()
t1(4)+K
" Z /1 2 ‘u (w’z’l‘ﬁ(w)’fiﬁ (w)) —u (waiiz,é(w)a%i,é (w)) ‘ d (Mn)ﬁ (w)
k=t1(j) Oy

(by the definition of 7, ; and %71%5)

= 3 [ Jue (w8 () = w07 0, ) (1), ()
k=0 Y ™;0mg
tH(4)+K
_ — =2
s [ T3 ) (w0, s )| d ). @)
k:tl(j) W;ﬂﬂﬁ
(by assumption (I) and the definition of 7 5 and ii,a)
() +K
< > [ ot m) (17 ) + 7)) )
k:tl(j) w;ﬂwz

< 200 K? max HS2H

52€52

Similarly, it can be shown that

‘U(/‘ ) }(xIJInJ) U(Mn) 1(‘7: 7$n6) < 205K max H82H

2652
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Thus,

U(,un) (.Il,l'i 6) U(ﬂn) (Eiéafié) (22&)

al
J

(xlji,a) — U, (@ n57 né) + 405 K max ||32H (22b)

1
5 5252

Since lim,, o0 1, = Hg, it follows from assumption (IIa) on p, that there
exists N’ (0) > 0 such that

== mf{pm( Dlief{l,2};L<j<J(6);N(6)<n}>0. (23)

By Proposition 2, the assumption that lim, . i, = 1, and the fact that
(23, 22) € O (ug) x O% (1) (implied by the choice of (&}, 22) and Remark
3), there exists N” (§) > N’ (d) such that for every n > N” (0), (2}, 42) €
Ol (u,) x O? (u,). Thus (&},72) € O (u,) x O% (u,) as well for every
n > N”(0). But then clearly

Tos € OF (1) (24)

for i = 1,2 and every n > N” (), being a convex combination of £’-optimal
strategies. Therefore, by (8) in Remark 4’, for every 2! € X" and n > N” (4)

2 =1 =2 9

- U TpsyTps) < .
n,5> (Nn)wjl_< n,0 ,6) " (7"]‘)

S

U,y (2

1
J

(25)
From (22) and (25), for every z! € XV and n > N" (§)

/
Uty (2,70 5) = Ut 1( T 5 Tos) < +4CK? max ||s*|| < e, (26)
n (})

Jl 252
where the last inequality is implied by the definition of ¢ and the choice of §
(see (16), (23)). Asin Case 1, this is true for any z* € X!, not just 2! € XV,

Case 3: 0 < j < L. Since (ig,25) € IBE (1) and (7, 5,75 5) is identical
to (23,42) on some support of (Mo) (by the definition of (z) 5,72 5) and
assumption (IIb)), we have

U(#o) }( 711,67§721,6) > U(#o)w} (xlvfgz,é) (27)
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for every 2! € X'. However, as

lim (,un)w} (Wz) = (Mo)w; (Wi)

n—oo

L
for k = 0,...,L and (1) (U W%) =1 (by (IIb)), and as w is uniformly
J
k=0

bounded, it is obvious that

lim [U(unm (zt, 2?) — Ulo) 1 (z,2%)]| =0 (28)
uniformly in (2!, 2?). It follows from (27) and (28) that there exists N’ > 0
such that (18) holds for every ' € X!, every 0 < j < L, and every n > N'.

We conclude that (18) (and, similarly, (19)) hold, for every ! € X! and
22 € X? every j > 0,and everyn > N (§), where N (§) = max {N" (§), N'}.
Thus, indeed, (Z;, 5,72 5) € IBE. (u,) for each n > N (6).

It can be assumed w.l.o.g. that {N ( )}20—1 is a strictly increasing se-
quence of positive integers (recall the definition of dy in (16)). Consider a

sequence {(z5,22)}°, C X' x X? defined by (z,72) = (fl 502 T2 50) if

Yy
N(%) < n < N(32) for k > 1.2 It follows from (17) that lim, s (2}, 22) =
(23, xo) . Furthermore, since for every 0 < § < 0y and every n > N (4) it was
shown that (z} 5,72 5) € IBE. (u,), it follows that (2},42) € IBE. (y,,) for
every n > 1. J

Remark 5. It is worthwhile to stress the role played in the proof by the
zero-sum assumption on the game (without which, as we know, the ALSC
of the IBE correspondence does not obtain). Recall that the approximating
equilibrium (Z}, 5,72 5) in G(u,,), defined in (17), is a state-dependent mix-
ture of the given IBE (Z},#2) in G(y,) with an IBE (g!,72) in G’ (i,), in
which the weight of (&}, 22) is moving gradually from 1 to 0 as the players’
types increase. The proof uses the fact that mixtures of (e-)optimal strate-
gies remain (e-)optimal (see the argument establishing (24)), to deduce that
() 5,72 5) is an e-IBE in G(u,,) for the types considered in Case 2. Note

2If n < N(bp), let (2L,%2) be an arbitrarilty chosen element of IBE, (u,,) .
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that this step could not have been done for non-zero-sum games, where the
sets of (e-)IBE strategies are typically non-convex, and thus mixtures may
be far from (e-)IBE strategies.

Remark 6. Proposition 3 remains valid when instead of (IIb) and (Ilc),
it is assumed that for every n > 0 and j > 0, (u,).: is supported only on
t'(G)+K ]

U W,;i. The proof follows the same line as the current one, but is simpler.
k=ti(j)

When at least one player has a finite number of types, ALSC obtains
without assuming either (I) or (II) of Proposition 3. Convergence of common
priors implies, in this case, almost uniform convergence of conditional beliefs,
and thus the IBE expected payoff correspondence is ALSC (for general, not
just the zero-sum, games), according to the main result of Kajii and Morris
(1994, 1998). The ALSC of the IBE strategy correspondence transpires from
the proof of that result. For the sake of completeness, however, we state and
prove the following proposition, for zero-sum Bayesian games with a finite
number of types for at least one player.

Proposition 4. Assume min(T",7?%) < oo. Let {p1,}roy C A(Q,F) be
such that im,, o 1,y = o, and (i) (W;) > 0 for every i = 1,2 and every 0
< j <min(7"+1,00). Then the IBE correspondence is ALSC along {p, }re, -

Proof. Assume w.lo.g. that 7' < co. Let {u,}rey C A(Q,F) be a
sequence satisfying all the assumptions, and fix (&}, 22) € IBE (u,), € > 0.
Also consider a sequence {y2}>°, C X? such that y? is an (ex-ante, or,
equivalently, interim) best response of player 2 to the strategy #§ of player 1
in the game G (u,,) , for each n > 1.

Let -

0<0<dy=-—— mi ! 29

<0 =09 160 Ogjlg}lﬂo (%)7 (29)
J(5)

and let an integer 0 < J (§) < min(7T?+1, c0) be such that /“L(U 7%) > 1-4.
=0

<
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Define a sequence { (75 5)} - C X? as follows: for every n > 1,

2 () = 22 (w), ifwe L_J Uyt (30)

y? (w), otherwise.

The strategy &, being in O* (1) by Remarks 2 and 3, is also in Oyp4, 0 (Kn)
by Proposition 2, and thus, for every 0 < j < T" with 4, (7}) > 0 and every

a2t e X1,
AM d( i, 11o)

Uy (80, 88) = Ugy (21, 35) — (31)
(b)) #1107 40 n)al 0 " (WD
by (8) in Remark 4. Since clearly, for every such j and x!
'Uw )2 (@Y 35) = U, (a8, T 5)
2M o
<2M ()0 | 92\ U =,
i (75)
(31) implies that
_ AM (d(ptn, p10) +6)
U(M ) (Iovxn 6) > U(M ) (Iljxi 6) - 2 . (32)

i (7})

By our assumptions on {un}zo 0 there exists N; (§) > 0 such that d(u,,, 1)
< 0o and ming<j<p1 p,, ( ) > 1 5 Ming<j<71 fg ( ) for every n > N; (J). The
choice of ¢ in (29) and the mequahty (32) guarantee that

U(Nn),,]l_ (‘%(1)77721,6) = U(Nn),fjl_ (xlafi,é) —¢ (33)

for every 0 < j < T, every 2! € X', and every n > N; (§).
Just as in (31), for every 0 < j < J(6) with p, (72) > 0 and 22 € X

4Md<:un7 MO)

o (73)

Utha) 2 (@0, %) < Ut 2 (80, 2°) + (34)
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By our assumptions on {/, }~ ,,

4Md(tu'n :u'O)
2

> 0 and maxo<;<() < ¢ for every n > N5 (9), and therefore for
n {75

every 0 < j < J(4), every 22 € X2 and every n > Ny (4)

But by (30), 4 (w) = 75 5 (w) for all w € 7%, and thus in fact the following
inequality holds:

U(un)ﬁg (x(lw n5) < U, W?( é x2) +e. (35)
When j > J(9), fi,& (w) =2 (w) for all w € W?, and by the definition of

{y2}>7 | as the sequence of best responses to &} in the games {G (u,,)} ",

U, (%afi,&) < U, (&5, 2%)

for every J (§) < j < min(7? 4 1,00), every 2 € X? and every n > N2 (9).
Thus, (35) in fact holds for every 0 < j < min(7? + 1,00), every z* € X2,
and every n > N5 (9). This fact, coupled with (33), shows that (g, 7% ;) €
IBE. (u,) for each n > N (0) = max (N (§), N2 (§)) .

Since lim; 7, ; = I, the construction in the last paragraph of the
proof of proposition 3 can be repeated to create out of {fi,a}zo:l a se-
quence {#2}>° | C X? such that lim, . (&§,42) = (2,23), and (2},22) €
IBE. (p,,) for every n > 1. J
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