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Abstract
Until now, proving the folk theorem in a game with three or more

players required imposing restrictions on the dimensionality of the stage-
game payoffs. Fudenberg and Maskin (1986) assume full dimensionality
of payoffs, while Abreu, Dutta, and Smith (1994) assume the weaker NEU
condition (“nonequivalent utilities”). In this note, we consider a class of
n-player games where each player receives the same stage-game payoff,
either zero or one. The stage-game payoffs therefore constitute a one di-
mensional set, violating NEU. We show that if all players have different
discount factors, then for discount factors sufficiently close to one, any
strictly individually rational payoff profile can be obtained as the out-
come of a subgame-perfect equilibrium with public correlation.

Keywords: repeated games, folk theorem, different discount factors
JEL: C72, C73

1 Introduction

For the folk theorem to hold with more than two players, it is necessary to
have the ability to threaten any single player with a low payoff, while also
offering rewards to the punishing players. In assuming full dimensionality of the
interior of the convex hull of the set of feasible stage-game payoffs, Fudenberg
and Maskin (1986) guarantee that those individual punishments and rewards
exist. Abreu, Dutta, and Smith (1994) show that the weaker NEU condition
(“nonequivalent utilities”), whereby no two players have identical preferences in
the stage-game, is sufficient for the folk theorem to hold.

When the NEU condition fails, players that have equivalent utilities can no
longer be individually punished in equilibrium. Wen (1994) introduces the no-
tion of effective minmax payoff, which takes into account the fact that when a
player is being minmaxed, another player with equivalent utility might unilat-
erally deviate and best respond. The effective minmax payoff of a player cannot
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be lower than his individual minmax payoff. Wen shows that the effective min-
max is the lower bound on subgame-perfect equilibrium payoffs and establishes
a folk theorem: when players are sufficiently patient, any feasible payoff vector
can be supported as a subgame-perfect equilibrium, provided it dominates the
effective minmax payoff vector.

As pointed out by Lehrer and Pauzner (1999), when players have different
discount factors, the set of feasible payoffs in a two-player repeated game is
typically larger and of higher dimensionality than the set of feasible stage-game
payoffs. In a particular three-player game in which two players have equivalent
utilities, Chen (2008) illustrates how with unequal discounting payoffs below the
effective minmax may indeed be achieved in equilibrium for one of the players.

In this note, we explore the notion that unequal discounting restores the
ability to punish players individually in an n-player game where all players
have equivalent utilities. We find that a small difference in the discount factors
suffices to hold a player to his individual minmax for a certain number of periods
while still being able to reward the punishing players. For discount factors
sufficiently close to one, any strictly individually rational payoff, including those
dominated by the effective minmax payoff, can be obtained as the outcome of
a subgame-perfect equilibrium with public correlation, restoring the validity of
the folk theorem.

Although our result is shown in the case of games where all players have
equivalent utilities, we conjecture that it extends to weaker cases of violation of
NEU, as long as any two players with equivalent utilities have different discount
factor. The intuition behind this conjecture is that following Abreu, Dutta, and
Smith (1994) we could design specific punishments for each group of players
with equivalent utilities and use the difference in discount factors within each
group to enforce those specific punishments.

1.1 An Example

L R L R
T 1,1,1 0,0,0 T 0,0,0 0,0,0
B 0,0,0 0,0,0 B 0,0,0 1,1,1

C D

Figure 1: A stage game with one-dimensional payoffs

Consider the stage-game in Figure 1, where Player 1 chooses rows, Player 2
columns and Player 3 matrices. This stage-game is infinitely repeated and the
players evaluate payoff streams according to the discounting criterion. When
the players share a common discount factor δ < 1, Fudenberg and Maskin (1986,
Example 3) show that any subgame-perfect equilibrium yields a payoff of at least
1/4 (the effective minmax) to each player, whereas the individual minmax payoff
of each player is zero.1 The low dimensionality of the set of stage-game payoffs

1For example, when Player 1 plays T and Player 2 plays R, Player 3 gets a payoff of 0
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weakens the punishment that can be imposed on a player as another player
with equivalent utility can deviate and best respond. The inability to achieve
subgame-perfect equilibrium payoffs in (0, 1/4) means that the “standard” folk
theorem fails in this case.

We show however that if all three players have different discount factors,
there exists a subgame-perfect equilibrium in which the payoff to each player
is arbitrarily close to zero, the individual minmax, provided that the discount
factors are sufficiently close to one. Any payoff in the interval (0, 1/4) can then
be achieved in equilibrium, restoring the validity of the folk theorem in the
context of this game.

1.2 Notation

We consider an n-player repeated game, where all players have equivalent utili-
ties. We normalize payoffs to be in {0, 1} and each player’s individual minmax
payoff is zero. We use public correlation to convexify the payoff set, although
we argue later that this is not necessary. Players have different discount factors,
and are ordered according to their patience level: 0 < δ1 < · · · < δn−1 < δn < 1.
We use an exponential representation of discount factors: ∀ i, δi := e−∆ρi , where
∆ > 0 could represent the length of time between two repetitions of the stage
game. As ∆→ 0, all discount factors tend to one. The ρ’s are strictly ordered:
0 < ρn < · · · < ρ2 < ρ1. We assume that the stage game has a (mixed) Nash
equilibrium which yields a payoff Q < 1 to all players.2

We summarize our assumptions about the game and introduce a notation
for the lowest subgame-perfect equilibrium payoff of a player i in the following
definitions:

Definition 1. Let Γ (∆) be the set of n-player infinitely repeated games such
that:

A1. The set of stage-game payoffs is one-dimensional and all players receive the
same payoff in {0, 1}.

A2. The stage game has a mixed-strategy Nash equilibrium which yields a payoff
of Q < 1 to all players.

A3. Each player’s pure action individual minmax payoff is zero.

A4. Players evaluate payoff streams according to the discounting criterion, and
discount factors are strictly ordered: 0 < δ1 < · · · < δn < 1, where δi :=
e−∆ρi .

Note that the stage game of Figure 1 satisfies assumptions A1 to A3 of
Definition 1.
whether he plays C or D.

2For example in the game of Figure 1, the mixture
{(

1
2 ,

1
2

)
,
(

1
2 ,

1
2

)
,
(

1
2 ,

1
2

)}
is a Nash

equilibrium that yields a payoff of 1/4.
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Definition 2. We denote by ai the lowest subgame-perfect equilibrium payoff
of Player i in a game G∆ ∈ Γ (∆).

For given discount factors, the existence of the (ai)i=1,...,n is ensured by the
compactness of the set of subgame-perfect equilibrium payoffs (see Fudenberg
and Levine (1983, Lemma 4.2)).

1.3 Main Result and Outline of the Proof

Our main result, Theorem 1, states that for games in Γ (∆), the lowest subgame-
perfect equilibrium payoff of each player goes to zero (the common individual
minmax payoff) as discount factors tend to one:

Theorem 1. Consider an n-player infinitely repeated game G∆ ∈ Γ (∆). Then
ai ∈ O (∆) for all i.3

Theorem 1 states that for discount factors sufficiently close to one (that is
for ∆ sufficiently close to zero), the lowest subgame-perfect equilibrium pay-
off of each player i, ai, is arbitrarily close to zero. We do not provide a full
characterization of the set of subgame-perfect equilibrium payoffs but note that
any feasible and strictly individually rational payoff is a subgame-perfect equi-
librium payoff. In recent work, Sugaya (2010) characterizes the set of perfect
and public equilibrium payoffs in games with imperfect public monitoring when
players have different discount factors, under a full-dimensionality assumption.

To prove Theorem 1, we first show that when stage-game payoffs are iden-
tical, the lowest subgame-perfect equilibrium payoffs are ordered according to
the discount factors (Lemma 1). A player cannot have a lower lowest subgame-
perfect equilibrium payoff than another player who is less patient. We then
show that the lowest subgame-perfect equilibrium payoffs of the two most pa-
tient players (Player n−1 and Player n) are arbitrarily close to each other when
discount factors tend to one (Lemma 2). This is done by explicitly constructing
a subgame-perfect equilibrium of the repeated game.

In a similar way, we then construct a set of subgame-perfect equilibria (one
for each player i ∈ {2, . . . , n− 1}) (Lemma 3) and use those to bound the
distance between the lowest subgame-perfect equilibrium payoffs of players i
and i − 1 (Lemma 4). We then show by induction that the lowest subgame-
perfect equilibrium payoffs of any two players are arbitrarily close to each other
as discount factors tend to one (Lemma 5). Finally we show that Player 1’s
lowest subgame-perfect equilibrium payoff can be made arbitrarily close to zero
as discount factors tend to one (Lemma 6). We are then able to conclude and
prove Theorem 1.

3That is, ∃M ≥ 0 and ∆∗ > 0 such that ai ≤M ·∆ for ∆ ≤ ∆∗.
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2 Lowest Equilibrium Payoffs

2.1 Strategy Profiles and Incentive Compatibility Constraints

To prove Theorem 1, we explicitly construct several subgame-perfect equilibria
of the repeated game. To do so, we consider strategy profiles that give a constant
expected stage-game payoff between zero and one (using public correlation) to
all players for a given number of periods, and then stage-game payoffs of one
forever:

Definition 3. Let σ(µ, τ, i) be the strategy profile such that:

(i) For τ periods, in each stage-game, players use a public correlating device
to generate an expected payoff of µ. When the public correlating device
generates a payoff of zero, players minmax Player i.

(ii) In all subsequent periods t > τ , players play an action profile yielding a
stage-game payoff of 1 to each player.

(iii) During the first τ periods, deviations by Player i are ignored. After that, if
Player i deviates from the equilibrium path, players then play a subgame-
perfect equilibrium which gives the lowest possible payoff to Player i, ai.

(iv) If a deviation by Player j 6= i occurs at any time, players then play
a subgame-perfect equilibrium which gives the lowest possible payoff to
Player j, aj .

Assuming that the correlating device generates a payoff of zero at t = 0, a
player j 6= i will not have an incentive to deviate from σ(µ, τ, i) if:4

(1− δj) + δjaj ≤ δj
(
(1− δτ−1

j )µ+ δτ−1
j

)
, (1)

which can be rewritten as

δτj ≥
1− δj + δjaj − δjµ

1− µ . (2)

To prove Theorem 1, we show that there exists a “low” µ and a large τ such
that for ∆ sufficiently close to zero, σ(µ, τ, i) is subgame perfect, that is, we
show that (2) is satisfied for any j 6= i. To do so, we identify the player with the
tightest incentive compatibility constraint as j∗i and find the largest τ such that
(2) is satisfied for Player j∗i (Lemma 3). By a “low” µ we mean that µ must
be close to ai−1. To this end, we define a stage-game payoff µi that is slightly
above ai−1:

4Note that if a player has no incentive to deviate if the public correlating device generates
a payoff of zero at t = 0, he will have no incentive to deviate in subsequent periods either.
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Definition 4. For all i ∈ {1, ..., n}, let µi be such that:5

µi =
{
ai−1 + 1−δ1

δ1
if 2 ≤ i ≤ n,

0 if i = 1.

2.2 Proof of Theorem 1

In a first step towards Theorem 1 we now show that the lowest subgame-perfect
equilibrium payoffs are ordered according to the discount factors (Lemma 1),
and that Player n’s lowest subgame-perfect equilibrium payoff is arbitrarily close
to Player n− 1’s for ∆ close enough to zero (Lemma 2).

Lemma 1. ∀i ∈ {2, . . . , n}, ai−1 ≤ ai.

The proof of Lemma 1 is presented in Appendix A. The main idea is to
find a stream of payoffs (zt)t=0,...,∞ in [0, 1]N that minimizes Player i’s average
discounted payoff, given Player i − 1 is guaranteed his lowest subgame-perfect
equilibrium payoff at each stage. By definition, the resulting average discounted
payoff for Player i cannot be greater than ai. We show that the constraints
imposed by Player i−1’s lowest subgame-perfect equilibrium payoff must all be
binding and that zt = ai−1, ∀t ≥ 0.

Lemma 2. |an − an−1| ∈ O (∆).

Proof. Consider the strategy profile σ(µn,∞, n), where µn = an−1 + 1−δ1
δ1

. We
are going to show that this constitutes a subgame-perfect equilibrium.

First, note that in a period in which the public correlating device gener-
ates a payoff of one, no player has a one-shot profitable deviation. Secondly,
because Player n is being minmaxed in a period in which the public corre-
lating device generates a payoff of zero, he doesn’t have a profitable one-shot
deviation. Thirdly, because punishment phases consist of subgame-perfect equi-
librium strategies, no players has a profitable one-shot deviation during one of
those. Thus, to verify that σ(µn,∞, n) is subgame perfect, we only need to
check that players i ≤ n − 1 do not have profitable one-shot deviations when
the public correlating device generates a payoff of zero.

A deviation from Player i ≤ n − 1 leads at most to a one-off gain of one
followed by a payoff of ai forever. Therefore, there is no one-shot profitable
deviation if (1 − δi) + δiai ≤ δi

(
an−1 + 1−δ1

δ1

)
, where the right-hand-side is

the repeated game payoff to Player i if the public correlation device indicates a
zero payoff action profile in that period. This inequality is always satisfied for
i ≤ n− 1 as ai ≤ an−1 (Lemma 1) and as 1−δi

δi
≤ 1−δ1

δ1
.

By definition of an, and by Lemma 1, we have that an−1 ≤ an ≤ an−1+ 1−δ1
δ1

.
We conclude the proof by noting that an − an−1 ≤ 1−δ1

δ1
and that 1−δ1

δ1
∈

O (∆).
5Note that for all i and for ∆ sufficiently close to zero, µi ≤ 1. Indeed, µi ≤ Q +

1−δ1
δ1
→∆→0 Q < 1.
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We have shown that the lowest subgame-perfect equilibrium payoffs of the
two most patient players are arbitrarily close as ∆ tends to zero. The intuition
behind this result is that all players can collude against Player n by minmaxing
him whenever the public correlation device generates a payoff of zero. Since
Player n−1 is the most patient of the colluding players and since lowest subgame-
perfect equilibrium payoffs are ordered according to discount factors, his lowest
subgame-perfect equilibrium will determine by how much Player n’s equilibrium
payoff can be pushed down.

We now show that the lowest subgame-perfect equilibrium payoffs of any two
players are arbitrarily close to each other as ∆ tends to zero (Lemma 5). We
start by identifying bounds on Player i > 1’s lowest subgame-perfect equilibrium
payoff. To do this, we find the largest time τ ≥ 1 such that the strategy profile
σ(µi, τ, i) is a subgame-perfect equilibrium and compute its equilibrium payoff
for Player i. We then show Lemma 5 by induction.

First, we introduce some useful notation. For every player i ∈ {1, . . . , n− 1},
define

N i
+ := {j > i : 1− δj + δjaj − δjµi > 0} .

When proving that for a particular τ , σ(µi, τ, i) is a subgame-perfect equilib-
rium, N i

+ should be thought of as the set of players for whom profitable devia-
tions might exist depending on the value of τ . That is, N i

+ is the set of players
for whom the right-hand side of (2) (when replacing µ with µi) is strictly pos-
itive. We will therefore chose τ to satisfy the non-deviation constraints of all
players in N i

+. When N i
+ is not empty, we identify the player from this set with

the tightest constraint as j∗i and we define t̃i as follows:

j∗i := arg min
j∈Ni+

log
(

(1− δj + δjaj − δjµi) / (1− µi)
)

log δj
,

t̃i :=
log
((

1− δj∗
i

+ δj∗
i
aj∗
i
− δj∗

i
µi
)
/ (1− µi)

)
log δj∗

i

.

Let t∗i :=
⌊
t̃i
⌋
be the largest integer smaller or equal than t̃i and define ri ∈ (0, 1)

to be the fractional part of t̃i:

ri := t̃i − t∗i .

Note that t∗i is the longest time τ such that j∗i does not have a profitable one-shot
deviation in σ(µi, τ, i).

In Lemma 3 we show that t∗i is well defined and arbitrarily large and that
the strategy profile σ(µi, t∗i , i) is indeed subgame perfect for ∆ sufficiently close
to zero.

Lemma 3. Let i ∈ {2, ..., n − 1}, and assume that N i
+ 6= ∅. Given j∗i , t∗i and

µi, ∃∆∗i > 0 such that for ∆ ∈ (0,∆∗i ), σ(µi, t∗i , i) constitutes a subgame-perfect
equilibrium.
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Proof. For notational convenience, we omit the i subscript on j∗i , t̃i, t∗i , and ri.
First, recall that for ∆ sufficiently close to zero, µi ≤ 1.6 We now check that
t∗ is well defined. Note that ∃∆ij > 0 and ηij < 1 such that for ∆ ≤ ∆ij ,
1−δj+δjaj−δjµi

1−µi < ηij .7 Because ηij does not depend on ∆, this shows that
lim∆→0 t̃ = ∞ and ensures that ∃∆∗i > 0 such that t∗ is well defined and
strictly positive for ∆ ∈ (0,∆∗i ).

Because i is being minmaxed if the public correlating device generates a pay-
off of zero, i does not have a profitable one-shot deviation. Also, no player will
have a profitable one-shot deviation during the punishment phases of σ(µi, t∗i , i),
as those are subgame perfect.

We now check that no player j 6= i has a profitable one-shot deviation, that
is, we check that (1) (when replacing µ with µi and τ with t∗) holds for all
players j 6= i:

(1− δj) + δjaj ≤ δj
(

(1− δt
∗−1
j )µi + δt

∗−1
j

)
. (3)

We first check that (3) holds for players j ≤ i− 1 and then for players j > i:

(i) No deviation from player j ≤ i − 1: Note that because µi ∈ [0, 1], we
have that µi ≤

(
1− δt

∗−1
j

)
µi + δt

∗−1
j . In order to show that (3) holds,

we can therefore show that (1 − δj) + δjaj ≤ δjµi, which is equivalent to
1−δj
δj

+ aj ≤ ai−1 + 1−δ1
δ1

. This inequality holds ∀j ≤ i− 1, as 1−δj
δj
≤ 1−δ1

δ1

and aj ≤ ai−1.

(ii) No deviation from player j > i: We can rearrange (3) to get

δt
∗

j ≥
1− δj + δjaj − δjµi

1− µi
. (4)

First, note that if j /∈ N i
+ then j has no incentive to deviate as δt∗j > 0 ≥

1−δj+δjaj−δjµi
1−µi . Now let j ∈ N i

+. Since t∗ has been chosen such that (4) is
satisfied for player j∗, (4) is also satisfied for all other players in N i

+, and
no player j ∈ N i

+ will have an incentive to deviate.

We conclude that for ∆ sufficiently close to zero, σ(µi, t∗i , i) is a subgame-
perfect equilibrium.

Note on public correlation. In Lemma 3, we show that σ(µi, t∗i , i) is a subgame-
perfect equilibrium and that t∗i goes to infinity as ∆ approaches zero. Instead of
using the strategy σ(µi, t∗i , i), which relies on public correlation, we can consider
a deterministic strategy that alternates between t∗i,1 zeros and t∗i,2 ones, where

6See footnote 5.
7Since aj ≤ Q, 1−δj+δjaj−δjµi

1−µi
≤ δj

Q−µi
1−µi

+ 1−δj
1−Q−(1−δ1)/δ1

. For any x in [0, 1),
Q−x
1−x ≤ Q, thus the right-hand-side of the previous inequality is bounded from above by

δjQ+ 1−δj
1−Q−(1−δ1)/δ1

, which tends to Q < 1 as ∆ tends to zero.
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t∗i,1 + t∗i,2 = t∗i and t∗i,2/t
∗
i is arbitrarily close to µi, starting with a payoff of

zero. This is possible because t∗i goes to infinity. Intuitively, as ∆ goes to zero,
such a strategy will yield a payoff to any player arbitrarily close to the payoff
from σ(µi, t∗i , i), while having a period-zero incentive compatibility constraint
less stringent than (3) since µi is promised on average over the first t∗i periods
and the first period payoff is a zero. This should ensure that Lemmas 3 and 4
still hold under such a deterministic strategy.

We now compute the payoff of player i from σ(µi, t∗i , i) in order to bound
the distance between ai and ai−1.

Lemma 4. ∀i ∈ {2, . . . , n− 1}, we have that either:

(i) ∀ j > i, |aj − ai−1| ∈ O (∆), or

(ii) |ai − ai−1| ∈ O (∆) +O
(
aj∗
i
− ai

)
, where j∗i > i.

Proof. Again, for notational convenience, we omit the i subscript on j∗i , t∗i and
ri. If N i

+ is empty we directly have an indication of the distance between aj and
ai−1 by noting that no player j > i has an incentive to deviate from σ(µi, τ, i),
irrespective of τ : if N i

+ = ∅, then ∀ j > i , 0 ≤ aj − ai−1 ≤ 1−δ1
δ1
− 1−δj

δj
, which

implies that |aj − ai−1| ∈ O (∆).
Assume now that N i

+ 6= ∅, so that σ(µi, t∗, i) is a subgame-perfect equilib-
rium. We now compute Player i’s payoff from σ(µi, t∗, i) and compare it with
his lowest subgame-perfect equilibrium payoff. The payoff to Player i from the
strategy profile σ(µi, t∗, i) is:

(1− δt
∗

i )µi + δt
∗

i = µi + δt
∗

i (1− µi)

= µi + δ−ri

(
1− δj∗ + δj∗aj∗ − δj∗µi

1− µi

) ρi
ρj∗

(1− µi)

≥ ai,

where the last inequality holds because ai is i’s lowest subgame-perfect equilib-
rium payoff. This inequality can be rewritten as

ai − µi
1− µi

≤ δ−ri
(

1− δj∗ + δj∗aj∗ − δj∗µi
1− µi

) ρi
ρj∗
−1(1− δj∗ + δj∗aj∗ − δj∗µi

1− µi

)
,

where ρi
ρj∗
− 1 > 0, as i < j∗. Recall from the proof of Lemma 3 that for

∆ ≤ ∆ij∗ , (1− δj∗ + δj∗aj∗ − δj∗µi) / (1− µi) < ηij∗ , where ηij∗ < 1 does not
depend on ∆. For ∆ ≤ ∆ij∗ , we therefore have:

ai − µi
1− µi

≤ δ−ri η

ρi
ρj∗
−1

ij∗

(
1− δj∗ + δj∗aj∗ − δj∗µi

1− µi

)
.
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The previous inequality can be rewritten as:8

ai − ai−1 ≤
1− δ1
δ1

+ δ−ri η

ρi
ρj∗
−1

ij∗ δj∗ (ai − ai−1)

+ δ−ri η

ρi
ρj∗
−1

ij∗

(
1− δj∗ + δj∗ (aj∗ − ai)− δj∗

1− δ1
δ1

)
.

Because
lim

∆→0
δ−ri η

ρi
ρj∗
−1

ij∗ δj∗ = lim
∆→0

δ−ri η

ρi
ρj∗
−1

ij∗ = η

ρi
ρj∗
−1

ij∗ < 1,

there exists a ∆̃i ≥ 0 and an R < 1 such that for ∆ ≤ ∆̃i we have:

ai − ai−1 ≤
1− δ1
δ1

+R (ai − ai−1) +R

(
1− δj∗ + δj∗ (aj∗ − ai)− δj∗

1− δ1
δ1

)
.

To conclude, note that 1−δ1
(1−R)δ1

+ R
1−R

(
1− δj∗ − δj∗ 1−δ1

δ1

)
∈ O (∆), and that

R
1−Rδj∗ (aj∗ − ai) ∈ O (aj∗ − ai), as R < 1 is a fixed constant.

Recall that the difference between the two most patient players’ lowest
subgame-perfect equilibrium payoffs, an and an−1, is of order ∆ (Lemma 2).
Moreover in Lemma 4 we established a bound for the distance between ai−1
and the lowest subgame-perfect equilibrium payoff of a more patient player.
We can now establish by induction that the lowest subgame-perfect equilibrium
payoffs of any two players are arbitrarily close to each other as ∆ tends to zero.

Lemma 5. |ai − aj | ∈ O(∆), ∀ (i, j).

Proof. By Lemma 2, we know that this result is true for i, j ∈ {n− 1, n}. We
now prove this result by induction. Assume that ∀i, j ≥ k, |ai − aj | ∈ O(∆).
Our aim is to show that ∀i ≥ k, |ai − ak−1| ∈ O(∆).

If the first statement of Lemma 4 holds, then we have that ∀j > k, |aj −
ak−1| ∈ O (∆). Moreover, |ak − ak−1| ≤ |ak − aj | + |aj − ak−1| for any j > k.
By induction, |ak − aj | ∈ O (∆), thus we have |ak − ak−1| ∈ O (∆).

If the second statement of Lemma 4 holds then ∃ k∗ > k such that |ak −
ak−1| ∈ O (∆)+O (ak∗ − ak). From our induction hypothesis, |ak∗−ak| ∈ O (∆),
which implies that |ak − ak−1| ∈ O (∆). Using the triangle inequality, ∀i ≥ k,
|ai − ak−1| ≤ |ai − ak|+ |ak − ak−1| ∈ O (∆).

This shows that ∀i, j ≥ k − 1, |ai − aj | ∈ O(∆).

Finally, we show that the lowest subgame-perfect equilibrium payoff of Player 1
is arbitrarily close to zero as ∆ tends to zero. This is done by using a proof
similar to the one of Lemma 4, and considering the strategy profile σ(0, t∗1, 1).

Lemma 6. a1 ∈ O (∆) .
8By canceling the 1−µi and adding and subtracting δj∗ai inside the term in parentheses.
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The proof of Lemma 6 is presented in Appendix B. We are now able to prove
Theorem 1:

Prood of Theorem 1. From Lemma 5 and 6, we have that ∀i ∈ {1, . . . , n}, |ai−
a1| ∈ O (∆) and a1 ∈ O (∆). Using the triangle inequality, |ai| ≤ |ai−a1|+|a1| ∈
O(∆).

3 Conclusion

We have restored the validity of the folk theorem in games where full dimension-
ality / NEU is violated and the stage-game payoff set is one-dimensional. The
dimensionality typically required to punish and reward players individually is
obtained through the assumption that all players have different discount factors,
allowing them to trade payoffs over time.

A Proof of Lemma 1

To find a lower bound on player i ≥ 2’s lowest subgame-perfect equilibrium
payoff, we find a stream of payoffs (zt)t=0,...,∞ in [0, 1]N that minimizes player i’s
average discounted payoff, given player i− 1 is guaranteed his lowest subgame-
perfect equilibrium payoff at each stage. By definition, the solution to this
minimization problem cannot yield a payoff to player i which is greater than his
lowest subgame-perfect equilibrium payoff.

Formally, we solve the following minimization problem:

min
(zt)t=0,...,∞∈[0,1]N

(1− δi)
∞∑
t=0

δti zt (5)

subject to

(1− δi−1)
∞∑
t=s

δt−si−1 zt ≥ ai−1, ∀s ≥ 0 (6)

We show by induction that all constraints in (6) will be binding, which
implies that zs = ai−1, ∀s ≥ 0. Our induction hypothesis is that the constraints
in (6) must bind for s = 0, . . . , τ and therefore, that the minimization problem
(5) subject to the constraints (6) can be rewritten as:

min
(zt)t=τ,...,∞∈[0,1]N

λτ−1 (ai−1, δi−1, δi)+(1−δi)
( ∞∑
t=τ+1

δτi
(
δt−τi − δt−τi−1

)
zt

)
(7)

subject to

(1− δi−1)
∞∑
t=s

δt−si−1 zt ≥ ai−1, ∀s ≥ τ + 1 (8)

where the function λτ is defined by λ0 (ai−1, δi−1, δi) = (1− δi) ai−1
1−δi−1

and
λτ (ai−1, δi−1, δi) = λτ−1 (ai−1, δi−1, δi) + (1− δi) δτi + (δi − δi−1) ai−1

1−δi−1
.
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Initialization: τ = 0

The first constraint is the only constraint featuring z0 and can be rewritten
as z0 ≥ ai−1

1−δi−1
−
∑∞
t=1 δ

t
i−1 zt. Moreover, z0 enters with a positive coefficient

in the objective function, therefore, the first constraint must be binding. The
constraint is then used to eliminate z0 from the objective function: the mini-
mization problem (5) subject to (6) can therefore be written in the following
way:

min
(zt)t=1,...,∞∈[0,1]N

(1− δi)
(

ai−1

1− δi−1
+
∞∑
t=1

(
δti − δti−1

)
zt

)
subject to

(1− δi−1)
∞∑
t=s

δt−si−1 zt ≥ ai−1, ∀s ≥ 1

This verifies (7) and (8).

Induction

We assume that our minimization problem can be rewritten as (7) subject to
(8) for some τ > 1. Because δi > δi−1, zτ+1 enters with a positive coefficient in
the objective function and zτ+1 only appears in the constraint zτ+1 ≥ ai−1

1−δi−1
−∑∞

t=τ+2 δ
t−(τ+1)
i−1 zt, this constraint will be binding and the objective function

can be rewritten by substituting for zτ+1 as follows:

λτ−1 (ai−1, δi−1, δi) + (1− δi)
( ∞∑
t=τ+1

δτi
(
δt−τi − δt−τi−1

)
zt

)

= λτ−1 (ai−1, δi−1, δi) + (1− δi)
(
δτi (δi − δi−1)

(
ai−1

1− δi−1
−

∞∑
t=τ+2

δ
t−(τ+1)
i−1 zt

))

+ (1− δi)
∞∑

t=τ+2
δτi
(
δt−τi − δt−τi−1

)
zt

= λτ (ai−1, δi−1, δi) + (1− δi)
∞∑

t=τ+2

(
δτi
(
δt−τi − δt−τi−1

)
− δτi (δi − δi−1) δt−(τ+1)

i−1

)
zt

= λτ (ai−1, δi−1, δi) + (1− δi)
( ∞∑
t=τ+2

δτ+1
i

(
δ
t−(τ+1)
i − δt−(τ+1)

i−1

)
zt

)
,

where the first equality is obtained by substituting for zτ+1 and the other equal-
ities are obtained by grouping the terms in zt (t ≥ τ + 2) together. Thus (7)
and (8) hold for τ + 1 also.

This concludes the proof by induction and so all constraints in (6) must
bind: (1 − δi−1)

∑∞
t=s δ

t−s
i−1 zt = ai−1, ∀s ≥ 0. We now show that this implies
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that zs = ai−1, ∀s ≥ 0. Consider the constraint for some s ≥ 0:

ai−1 = (1− δi−1)
∞∑
t=s

δt−si−1 zt

= (1− δi−1)
{
zs + δi−1

∞∑
t=s+1

δ
t−(s+1)
i−1 zt

}

= (1− δi−1)
{
zs + δi−1

1− δi−1
ai−1

}
,

where the last inequality holds because the constraint is binding for s+ 1. This
implies that zs = ai−1, ∀s ≥ 0.

Given the constraints imposed on stage-game payoffs by player i− 1’s lower
subgame-perfect equilibrium bound, the lowest average discounted payoff which
can be given to player i is ai−1. We therefore have ai−1 ≤ ai. �

B Proof of Lemma 6

We follow the same line of reasoning as in the proof of Lemma 3 and Lemma 4,
using the strategy σ(0, t∗1, 1). As in Lemma 3, σ(0, t∗1, 1) is well defined and
constitutes a subgame-perfect equilibrium. Again, for notational convenience,
we omit the subscript 1.

The strategy profile σ(0, t∗, 1) yields a payoff of δt∗1 = δ−r1 (1− δj∗ + δj∗aj∗)
ρ1
ρj∗

to Player 1. Because a1 is player 1’s lowest subgame-perfect equilibrium payoff,
we have

a1 ≤ δ−r1 (1− δj∗ + δj∗aj∗)
ρ1
ρj∗

= δ−r1 (1− δj∗ + δj∗aj∗)
ρ1
ρj∗
−1 (1− δj∗ + δj∗ (aj∗ − a1)

)
+ δ−r1 δj∗ (1− δj∗ + δj∗aj∗)

ρ1
ρj∗
−1
a1.

Because

lim
∆→0

δ−r1 δj∗ (1− δj∗ + δj∗aj∗)
ρ1
ρj∗
−1 = lim

∆→0
δ−r1 (1− δj∗ + δj∗aj∗)

ρ1
ρj∗
−1 ≤ η

ρ1
ρj∗
−1

1j∗ ,

and η

ρ1
ρj∗
−1

1j∗ < 1 there exists an R < 1 and ∆∗1 ≥ 0 such that for ∆ ≤ ∆∗1 we
have

a1 ≤ R
(

1− δj∗ + δj∗ (aj∗ − a1)
)

+Ra1,

or
a1 ≤

R

1−R

(
1− δj∗ + δj∗ (aj∗ − a1)

)
.

We know from Lemma 5 that aj∗ − a1 ∈ O (∆), which concludes the proof,
as R < 1 does not depend on ∆. �
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