
Why Learning Doesn’t Add Up: Equilibrium

Selection with a Composition of Learning Rules

Russell Golman∗

April 8, 2010

∗Department of Applied and Interdisciplinary Mathematics, University of Michigan, 2082 East Hall, 530 Church

Street, Ann Arbor, MI 48109, USA. Telephone: 734 764-7436. Fax: 734 763-0937. E-mail: rgolman@umich.edu

1



Abstract

In this paper, we investigate the aggregate behavior of populations of learning

agents. We compare the outcomes in homogenous populations learning in accordance

with imitate the best dynamics and with replicator dynamics to outcomes in popula-

tions that mix these two learning rules. New outcomes can emerge. In certain games,

a linear combination of the two rules almost always attains an equilibrium that ho-

mogenous learners almost never locate. Moreover, even when almost all weight is

placed on one learning rule, the outcome can differ from homogenous use of that rule.

Thus, allowing even an arbitrarily small chance of using an alternative learning style

can shift a population to select a different equilibrium.

KEYWORDS: Adjustment dynamics, basins of attraction, best response dynam-

ics, equilibrium selection, evolutionary game, imitate the best dynamics, learning,

replicator dynamics.

JEL classification: C72, C73
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1 Introduction

Models of individual learning in games often produce the same dynamical systems

as population-based evolutionary adjustment processes. For example, an appropriate

form of reinforcement learning leads to the replicator dynamics (Borgers and Sarin

1997), originally proposed by theoretical biologists to describe the growth of a haploid

population (Taylor and Jonker 1978). Similarly, the best response dynamics (Gilboa

and Matsui 1991) can arise as the continuous time limit of a belief-based learning rule

like fictitious play or in a population of myopic best responders. The models that

lead to the replicator dynamics and those that lead to the best response dynamics

make mutually incompatible assumptions about how strategies are updated, offering

no middle ground.

In this paper, we adopt a population-based framework and propose combining

an imitative variant of best response dynamics (Hofbauer, 1995) with the replicator

dynamics to form a tractable composite rule. We find that a population is sensitive

to the presence of more than one learning style, as well as to how the learning rules

are put together, in that composite learning dynamics may have basins of attraction

that share little overlap with each other or with the homogeneous learning dynamics.

We focus in particular on a straightforward linear combination of imitate-the-best

and replicator learning rules, which we show to select an equilibrium not attained

by homogenous use of either pure rule in certain matrix games. Introducing even

arbitrarily small weight on an alternative learning rule may cause the resulting linear

3



combination of rules to locate a different equilibrium than the pre-existing pure rule.

A feature of the class of games we consider is the existence of a temporary initial

best response – an action that looks good at first, but that cannot survive against

itself. The temptation to try such an action instead of an equilibrium action creates

complex dynamics, which allow the effects of subtle differences in learning styles to

build up over time.

Learning in games, at the population level, can be modeled by dynamic adjustment

processes (Swinkels 1993, Fudenberg and Levine 1998). In imitate the best dynamics

(as with best response dynamics), players slowly adopt myopic best responses, ignor-

ing the possibility that the population mixed strategy may soon change. For a matrix

game, the resulting flows are piecewise linear in the direction of the best response to

the current population state. In replicator dynamics, players copy others’ strategies,

so more successful actions spread in the population.1 These population dynamics can

be derived from the revision protocols that describe how the individual agents learn.

In this paper, we combine revision protocols that lead to imitate the best and repli-

cator dynamics respectively, forming a rule in which either learning protocol may be

tried with some positive probability. We compare equilibrium selection following from

the composition of learning styles and from pure imitate the best and replicator dy-

namics, and we find they may be markedly different from each other in their long-run

behavior. For a specific class of coordination games, we show that introducing even a

1Actions initially not present in the population will never be tried with these imitative dynamics,

so we always consider initial points in the interior of the strategy space.
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small presence of a second revision protocol into a population changes which equilib-

rium the population locates. These results underscore the importance of accurately

determining exactly how agents learn.

Our results build off of existing comparisons of basins of attraction and equilibrium

selection under the best response dynamics and replicator dynamics (Golman and

Page 2010a, Golman and Page 2010b). The contribution of this paper is to explore

the behavior of a composition of dynamics. We find that heterogeneity across learning

styles may bring about new outcomes not foreseeable from analysis of the homogenous

dynamics induced by the component learning styles.

Our treatment of equilibrium selection relies on analysis of the deterministic dy-

namical system. The learning rules define paths through the strategy space that

attain equilibria in the games we consider. The equilibrium that is selected is thus

a function of the initial population mixed strategy point and the learning dynamic.

Nevertheless, we obtain results that hold throughout the interior of the strategy space

by focusing on cases in which the basin of attraction of a particular equilibrium ap-

proaches the entire space. Our approach does not assume random shocks that allow

the population to move from one equilibrium to another, as in the stochastic stability

literature (Foster and Young 1990, Young 1993, Kandori et al. 1993, Ellison 2000,

Binmore and Samuelson 1999). But, our findings complement that sort of ultralong

run analysis because an equilibrium whose basin of attraction approaches the entire

strategy space will be uniquely stochastically stable.

The rest of the paper is organized as follows. The next section defines the revision
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protocols and the learning dynamics derived from them. In Section 3, we present

our result comparing equilibrium selection of these rules. Section 4 concludes with a

discussion of the importance of models that capture heterogeneity of learning styles.

2 The Learning Dynamics

We assume a symmetric game, with agents recurrently randomly matched from a

single population. The set of actions is finite, A = {1, . . . , n}. We let xi refer to

the fraction of the society choosing action i ∈ A. The population mixed strategy

x = (x1, . . . , xn) is an element of △n−1, the (n−1)-dimensional simplex where xi ≥ 0

for all i and
∑

i xi = 1. Denote by �i(x) the payoff to action i. Naturally, payoffs are

a function of the population mixed strategy, �i : △
n−1 → ℜ. Denote the vector of

these payoffs by �⃗(x) = (�1(x), . . . , �n(x)). Let BR(x) be the set of best replies to x,

BR(x) = argmax
v∈△n−1

v ⋅ �⃗(x).

Best response dynamics can be written as

ẋ ∈ BR(x)− x. (1)

The imitate the best dynamics are

ẋi = xi

(

I(i∣x)−
∑

j

I(j∣x) xj

)

(2)

where the best response indicator function I(i∣x) = 1 if �i(x) = �max(x) and 0 other-

wise. These differential equations have points of discontinuity, so a (Filippov) solution
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(i.e., an absolutely continuous function that coincides with the unique solution when-

ever the differential equations are continuous) must satisfy (2) only for almost all t

(Smirnov, 2002; Aubin and Cellina, 1984; Benaim, et al., 2005). When there is a

unique best response – say action b – (which, for almost any payoff matrix, there is

at almost every point in the simplex) equation (2) simplifies to ẋ = xb (BR(x)− x).

The additional factor of xb here, as compared with equation (1), arises because the

learning process underlying these dynamics relies on imitation, and best responses

are only adopted at a rate proportional to how prevalent they are. In the interior of

the strategy space, the trajectory of the imitate the best dynamics matches (one of

the solutions of) the best response dynamics, though with different speed.2

The replicator dynamics are

ẋi = xi(�i(x)− �̄(x)) (3)

where �̄(x) = x ⋅ �⃗(x) is the average payoff.

Both imitate the best and replicator dyanamics can arise from Poisson alarm

clock models (see Sandholm (2009) and Schlag (1998)) in which a revision protocol

2How the imitate the best dynamics relate to the best response dynamics at the boundary of

the strategy space is an open question. Clearly, though, if the best response is absent from the

population, the dynamics stop altogether. An additional property of the imitate the best dynamics

that sets it apart from best response dynamics is that every Nash Equilibrium (even in mixed

strategies) must be a steady state. Imitate the best dynamics are also related to the imitative logit

dynamics as the limiting case when the logit rationality parameter approaches infinity (Weibull,

1995).
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determines the probability that an individual agent switches to another action (as a

function of population state and current payoffs) when one’s clock rings. The expected

motion of this stochastic process defines the learning dynamic.

The paths of the replicator and the imitate the best (and similarly the best re-

sponse) dynamics are invariant under positive affine transformations of the payoff

matrix.3 Payoff transformations do, however, affect the speed of the flow of replicator

dynamics. Flows are considered identical if their paths are the same, regardless of

speed, because the time parameter has no intrinsic scale.

When trying to combine imitate the best and replicator dynamics, the time pa-

rameter becomes relevant. To put both learning dynamics on the same footing, we

adopt the framework of a generalized imitation revision protocol. When an agent’s

alarm goes off, the agent picks an opponent at random and observes this opponent’s

action. (The selection of an opponent to observe is entirely independent of the ran-

dom matching of opponents to play against.4) The agent observes action j with

probability xj . The agent then switches to the opponent’s strategy with probability

q that depends on the opponent’s payoff. If q(�j(x)) =
�j(x)−�min(x)

�max(x)−�min(x)
, the revision

protocol generates the replicator dynamics, with a continual rescaling of time. For

this replicator protocol, the probability of imitation increases linearly in the observed

3Transformations of payoffs that do not affect the dynamics can still determine which of multiple

equilibria is payoff dominant. Thus, this traditional equilibrium selection criterion is unrelated to

the dynamical equilibrium selection we presently consider.
4See Boylan (1992) and Gilboa and Matsui (1992) for justification of random matching in a

countably infinite population and Alos-Ferrer (1999) for the case of a continuum of agents.
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payoff. Alternatively, if q(�j(x)) = 1 when �j(x) = �max(x) and 0 otherwise, the

revision protocol generates the imitate the best dynamics. We term this the imitate

the best protocol.

One natural way to combine imitate the best and replicator dynamics is to sup-

pose that agents use the replicator protocol with probability p and the imitate the

best protocol with probability 1 − p. 5 A linear combination of imitate the best and

replicator dynamics emerges:

ẋi = xi

[

p
�i(x)− �̄(x)

�max(x)− �min(x)
+ (1− p)

(

I(i∣x)−
∑

j

I(j∣x) xj

)]

. (4)

We can recover homogeneous use of a single learning protocol by setting p = 1 or

p = 0. With p = 1, equation (4) becomes

ẋi = xi

(

�i(x)− �̄(x)

�max(x)− �min(x)

)

. (5)

The factor 1
�max(x)−�min(x)

comes from the replicator revision protocol, where it is

necessary to ensure that we can interpret q as a probability, i.e., that q ≤ 1. With

the appropriate rescaling of time, it would drop out of equation (5), producing the

replicator dynamics of equation (3). With p = 0, the linear combination dynamics (4)

reduces to the imitate the best dynamics (2).

5Another possibility, instead of assuming that each agent sometimes uses each protocol, is that

there could be some agents who always use the imitate the best protocol and other agents who

always use the replicator protocol. The theoretical analysis is more complicated in this case, but by

capturing heterogeneity of learning styles across the population, the model appears more realistic.

This formulation is presented in the appendix.
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Note that the linear combination dynamics, as described by (4), is invariant under

positive affine transformations of the payoff matrix, and the relative growth rate of

any action is bounded between −1 and 1 (and a priori cannot be bounded any more

tightly). This would not be the case for the more straightforward combination

ẋi = xi

[

p (�i(x)− �̄(x)) + (1− p)

(

I(i∣x)−
∑

j

I(j∣x) xj

)]

.

This straightforward combination dynamic could behave quite differently from (4)

because the factor �max(x) − �min(x) could get bigger or smaller over time and thus

shift more or less weight to the replicator dynamics. Nevertheless, Theorem 1 would

hold with this dynamic in place of (4) if we were to divide all the entries in our payoff

matrix by N2. 6

3 Basins of Attraction

Strict Nash equilibria are asymptotically stable for the pure replicator dynamics,

the imitate the best dynamics, and the linear combination dynamics.7 However,

agreement of local stability properties does not ensure similar long-run behavior. In

6Dividing our payoff matrix by N2 would have the effect of making �max(x)− �min(x) ≈ 1. (We

cannot rescale payoffs to make �max(x)− �min(x) = 1 because it varies with time.) Establishing an

analogue of Theorem 1 is not a trivial corollary because this small variation in the learning dynamic

could potentially have a big impact on equilibrium selection (that is the point of our result, after

all), but in this case, the logic of our proof would still go through.
7See Hofbauer, et. al. (1979), Hofbauer (2000), Hofbauer and Sigmund (2003), and Hofbauer,

et. al. (2009) for more stability results concerning the best response and replicator dynamics.
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games with multiple equilibria, we must consider basins of attraction.

Imitate the best dynamics and replicator dynamics often produce very similar

basins of attraction for their equilibria. However, Golman and Page (2010a) provide

a class of three-by-three coordination games in which replicator dynamics has basins

of attraction arbitrarily different from those of best response dynamics (and hence

from imitate the best dynamics as well). Games with such divergence between the

behavior of the replicator dynamics and the imitate the best dynamics lend themselves

to the analysis of our composite dynamics. Intuition might lead one to believe that

a combination of imitate the best and replicator dynamics would always share some

overlap in basins of attraction with each component rule, but this is not so. The

linear combination dynamics can be fundamentally different from its parts. Here, we

identify a class of games in which imitate the best dynamics and replicator dynamics

and the linear combination of the two all have vanishing overlap in their basins of

attraction at the same time. That is, by combining an imitate the best protocol and

a replicator protocol, the population can locate an equilibrium that neither rule could

find on its own.

Consider a class of symmetric games with five actions and the following payoff
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matrix:

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 N

lnN lnN lnN −N lnN −N lnN

0 0 1 1− 1
N

0

1− 1
N

1− 1
N

1− 1
N

1− 1
N
+ 1

N2 1− 1
N

−N2 −N2 −N2 −N2 −N2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(6)

where the parameter N is large.8 Actions 2, 3, and 4 are all strict equilibrium actions.

The payoffs described by (6) may appear complicated, but they permit a simple

interpretation of the game. We should think of it as a coordination game, but with

a couple of extra options. Action 5 is just a bad choice. So bad, in fact, that all

other actions look good in comparison to it if an agent is using the replicator learning

protocol. While such strongly dominated strategies are often ignored when modeling

games, it’s hard to argue that they don’t exist, and there is both theoretical and

experimental evidence that they can affect equilibrium selection (Ochs 1995, Basov

2004). Action 1, on the other hand, looks tempting because it can exploit action 5.

In fact, action 1 is almost always the initial best response, but it’s only a temporary

best response because its payoff shrinks as agents learn to avoid action 5. Action 2

is high risk, high reward; agents want to coordinate on it if and only if they almost

never see actions 3 or 4 played. Actions 3 and 4 are safer, with moderate payoffs. Of

the pair, action 3 would yield a slightly higher equilibrium payoff, whereas action 4

8Our result holds for more general classes of games as long as the terms in the payoff matrix keep

the same relative orders of magnitude (cf. Golman, 2009).
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has the highest worst-case payoff.

In Theorem 1, we show that the imitate the best dynamics lead to everyone

playing action 2, the replicator dynamics to everyone playing action 3, and the linear

combination dynamics to everyone taking action 4. The imitate the best dynamics

selects the action that is a best response to the temporary best response; the replicator

dynamics selects the action that remains better than average as long as it spreads;

and the linear combination dynamics selects something else entirely.

Theorem 1 Consider the class of games with payoff matrix given by equation (6).

As the payoff parameter N grows arbitrarily large, the imitate the best dynamics, the

replicator dynamics, and the linear combination dynamics (with any positive weight

on both components, i.e., any p ∈ (0, 1)) from an arbitrarily large portion of the

strategy space flow to a single strict equilibrium featuring action 2, 3, or 4 respectively.

Notably, all three dynamics share with each other vanishing overlap in their basins of

attraction.

Proof See appendix.

For an arbitrarily large portion of the state space, all three dynamics start out

heading towards the initial, temporary best response (action 1). But, there are subtle

differences between the flows of each dynamic that will greatly affect which action

spreads when there’s hardly anybody left to exploit with action 1.

With imitate the best dynamics, the relative payoffs of the other actions are

irrelevant for their decay rate; agents switch away from actions 3 and 4 just as quickly
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as they switch from action 5. This mitigates the downside of action 2, and with its

residual high reward, it becomes the next best response. By the improvement principle

for best response / imitate the best dynamics (Monderer and Sela, 1997; Sela, 2000;

Viossat, 2008), if a strict equilibrium action is ever the unique best response to the

population state, it remains so thereafter. Thus, action 2 eventually spreads under

the imitate the best dynamics.

With replicator dynamics, the flow towards the initial best response comes at the

expense of the bad choice (action 5). As the payoff to action 5 is made arbitrarily bad

relative to all other payoffs, all other actions initially spread along with the initial

best response. The spread of actions 3 and 4 inhibits action 2, and the success of

action 1 is temporary, so we effectively have actions 3 and 4 racing to achieve critical

mass in a coordination game. Although action 4 starts out in the lead because it

profits more against action 1, action 3 generates for itself more positive feedback

and thus has a much lower critical mass threshold (the relevant comparison in (6) is

a33−a34 ≫ a44−a43). Thus, the replicator dynamics yields eventual coordination on

action 3.

For the linear combination dynamics, actions 3 and 4 neither keep pace with the

spread of the initial best response nor decay as fast as the bad choice. They do

survive enough to still inhibit action 2. But the initial lead in payoffs that action

4 has relative to action 3, and the fact that the linear combination dynamics favors

a best response more than the replicator dynamics does, means that action 4 now

has the advantage. Thus, the linear combination dynamics allows action 4 to become
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entrenched.

Not only can the linear combination dynamics differ from its component parts,

but this deviation in long-run behavior can even occur with almost all weight on one

piece of the linear combination. Thus, the mere possibility of using the replicator

protocol, however unlikely, is enough to completely shift the long-term behavior of a

population of agents using primarily the imitate the best protocol, and vice versa.

4 Discussion

In a large population of agents, we should expect heterogeneity of behavior (Hommes

2006, Kirman 2006).9 Camerer and Ho (1999) correctly recognized that individuals

may combine diverse basic learning rules. Our result demonstrates that the presence

of multiple learning styles in the same population, and the specifics of how they

all come into play, affects equilibrium selection. We find that for a specific class of

coordination games, the outcome of a learning dynamic that is a convex combination

of imitate the best dynamics and replicator dynamics is completely different than a

convex combination of the outcomes produced by these individual rules. The simple

assumption that the combination of two learning dynamics behaves like one of its

component pieces is wrong. The explanation is that in games with many actions and

multiple equilibria, the trajectory of the combination dynamics can enter parts of the

9Heterogeneity can take many forms. Ely and Sandholm (2005) consider agents who all use a

common learning rule, but who have diverse preferences, i.e., heterogeneous payoff functions.
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strategy space that would not be approached by either of the component dynamics.

Thus, the basins of attraction can be entirely reshaped when agents use multiple

learning rules.

Hofbauer et al. (2009) have shown that the time-average of the replicator dynamics

is a vanishingly perturbed solution of the best-reply dynamics. Our result, along

with the findings of Golman and Page (2010a; 2010b), illustrates that this does not

imply that these dynamics will necessarily select the same equilibria. Even a small

perturbation in the learning process can have a strong effect on long run behavior.

Appendix

The Two-Subpopulation Dynamics

Consider a partition of the population into subpopulations of best-responders and

replicators, y and z respectively.10 For all i, xi = yi + zi. Learning styles are fixed

for all time, so
∑

i zi = � is the fraction of agents using the replicator protocol, and

∑

i yi = 1 − � is the fraction using the imitate the best protocol.11 We assume the

two subpopulations are well-mixed, both for the purposes of playing the game and for

finding an agent to possibly imitate. Thus, the dynamics of these two subpopulations

10There is reason to think that optimizers and imitators coexist in the same population (Conlisk,

1980).
11In a biological setting, we might want to allow the relative sizes of the subpopulations to vary

with the success of the learning rule in use. The possibility of the learning rule itself evolving or

being learned would be an interesting extension.
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are coupled together. For the subpopulation learning with the replicator protocol,

the following dynamics emerges:

żi =
∑

j

zjzi

(

�i(x)− �min(x)

�max(x)− �min(x)

)

− zi
∑

j

zj

(

�j(x)− �min(x)

�max(x)− �min(x)

)

+

∑

j

zjyi

(

�i(x)− �min(x)

�max(x)− �min(x)

)

− zi
∑

j

yj

(

�j(x)− �min(x)

�max(x)− �min(x)

)

. (7)

The first two terms of (7) represent learning through imitation of other agents who also

use the replicator protocol while the last two terms represent learning from members

of the other subpopulation. Let �̄�(x) be the average payoff in subpopulation �,

meaning that z ⋅ �⃗(x) = ��̄z(x) and y ⋅ �⃗(x) = (1 − �)�̄y(x). The dynamics (7)

simplifies to

żi = �zi

(

�i(x)− �̄z(x)

�max(x)− �min(x)

)

+�yi

(

�i(x)− �min(x)

�max(x)− �min(x)

)

−(1−�)zi

(

�̄y(x)− �min(x)

�max(x)− �min(x)

)

.

(8)

For the subpopulation learning with the imitate the best protocol, the dynamics are:

ẏi = I(i∣x)(1− �)(zi + yi)− yi
∑

j

I(j∣x)(zj + yj). (9)

We refer to the system defined by (8) and (9) as the two-subpopulation dynamics.12

With twice the variables, the two-subpopulation dynamics is much more com-

plicated than the linear combination dynamics, but strict Nash equilibria are still

asymptotically stable, and for some games, at least, we can show that the two dy-

namics behave alike (Golman, 2009).

12We can recover homogeneous learning dynamics, as in equation (5) or (2), from the two-

subpopulation dynamics by setting � = 1 or � = 0 respectively.
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Formal Statement and Proof of Theorem 1.

Let m be the Lebesgue measure on the strategy space △n−1. Given the parameter N ,

let G(N) be a class of symmetric normal form games with payoff matrix A depending

on those parameters. That is, the payoff to action i against action j, aij , is a function

of N . Then, the expected payoff to action i given random matching with population

mixed strategy x ∈ △n−1 is �i(x) =
∑

j aij xj . Henceforth, we omit the payoff

function’s argument for ease of notation, writing �i in place of �i(x). The payoff

vector can be represented succinctly with matrix multiplication, �⃗ = Ax. Given a

learning rule ℛ and an equilibrium action i of the game G(N), let B(ℛ, i, N) denote

the basin of attraction of (xi = 1, x−i = 0). Let R denote the replicator dynamics, B

the imitate the best dynamics, and L(p) the linear combination using the replicator

protocol with probability p.

Theorem 1 Consider the class of games with payoff matrix given by equation (6).

For any ℛ ∈ {B,R,L(p)}, with any p ∈ (0, 1),

lim
N→∞

m (B(ℛ, i, N)) = m
(

△4
)

for some equilibrium action i, i.e., the imitate the best dynamics, the replicator dy-

namics, and the linear combination dynamics with any positive weight on both com-

ponents each flow to a single strict equilibrium from an arbitrarily large portion of the

strategy space. Still,

lim
N→∞

∑

i∈A

m (B(B, i, N) ∩ B(R, i, N)) = 0
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and

lim
N→∞

∑

i∈A

m (B(L(p), i, N) ∩ B(B, i, N)) = 0

and

lim
N→∞

∑

i∈A

m (B(L(p), i, N) ∩B(R, i, N)) = 0,

i.e., all three dynamics share with each other vanishing overlap in their basins of

attraction. (In particular, imitate the best dynamics leads to the spread of action 2,

replicator dynamics action 3, and the linear combination dynamics action 4.)

Proof Take N to be large. We first show that from almost any starting point in the

strategy space, the imitate the best dynamics locates the equilibrium in which only

action 2 is played. Observe that if action 2 is ever the best response, it remains so

forever, by the improvement principle.

Observe that �2 ≤ lnN as well as �3 ≤ 1 and �4 ≤ 1 everywhere. Consider

starting points that satisfy

x5(0) >
1

lnN
, (10)

a condition that can be met anywhere in the interior of the strategy space by taking

N to be sufficiently large. Initially the best response must be action 1, because

inequality (10) implies that �1 > lnN . So all xi, i ∕= 1, have the same relative decay

rate. While xi ≥
lnN
N

xi(0),

�1 ≥ lnNx5(0) > 1.

If xi is to reach this lower bound, at the same time

�2 ≥ lnN (1− x3(0)− x4(0)) > 1.
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Thus, �2 grows above �3 and �4 before �1 falls to that level. Eventually, action 2

must become the best response, and the dynamics heads towards it thereafter.

We now show that the replicator dynamics leads to the equilibrium in which action

3 is always played. Under the replicator dynamics,

ẋ3 = x3

[

x3(1− x3) + (1−
1

N
)x4(1− x3)− (1−

1

N
)x4 −

1

N2
x2
4 +

(Nx3+Nx4−lnN)x2+N2x5−Nx5x1

]

= x3

[

x3(x1 + x2 + x5) +
1

N
x3x4 −

1

N2
x2
4 + (Nx3 +Nx4 − lnN)x2 +N2x5 −Nx5x1

]

and we claim this is positive. We need to restrict to starting points that satisfy

x3(0) >
lnN

N
, (11)

another inequality that can be met anywhere in the interior of the strategy space

by taking N sufficiently large. Inequality (11) implies that 1
N
x3x4 −

1
N2x

2
4 > 0 and

Nx3 +Nx4 − lnN > 0. We have N2x5 − Nx5x1 > 0 easily. Thus, ẋ3 > 0 under the

replicator dynamics.

Lastly, we show that the linear combination dynamics finds the equilibrium in

which everyone takes action 4. Inspection of the payoff matrix reveals that �5 is

always �min. For sufficiently large N , initial points (except on the boundary of the

strategy space) will satisfy

x4(0) > N1−p lnN

N
. (12)

Among other things, this means that �2 < 0 initially. Assuming additionally that

x5(0) >
1
N
, as will also hold for sufficiently large N , then �1 = �max initially. While
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this remains the case, the linear combination dynamics yield

ẋ1 = x1

(

p
Nx5 − �̄

N2 +Nx5

+ (1− p)(1− x1)

)

(13)

ẋ3 = x3

(

p
x3 + (1− 1

N
)x4 − �̄

N2 +Nx5

− (1− p)x1

)

(14)

ẋ4 = x4

(

p
1− 1

N
+ 1

N2x4 − �̄

N2 +Nx5
− (1− p)x1

)

(15)

ẋ5 = x5

(

p
−N2 − �̄

N2 +Nx5
− (1− p)x1

)

. (16)

While x5 >
1

N2−N
and x4 >

lnN
N

, straightforward but tedious calculation reveals that

the average payoff �̄ < 0, and we have the following bounds:

ẋ1 > (1− p)x1(1− x1) (17)

ẋ3 > −(1 − p)x1x3 (18)

ẋ4 > −(1 − p)x1x4 (19)

ẋ5 > −x5. (20)

Also note that

−N2 − �̄

N2 +Nx5
=

−N2 − (−N2x5 +Nx5x1 − (Nx3 +Nx4)x2 + lnNx2 + �3x3 + �4x4)

N2 +Nx5

<
−N2(1− x5)−Nx5x1 + (Nx3 +Nx4)x2

N2 +Nx5

=
−N2(x1)−Nx5x1 + (Nx3 +Nx4)x2 −N2(x2 + x3 + x4)

N2 +Nx5

<
(−N2 −Nx5)x1

N2 +Nx5
= −x1.

So we can bound the left hand side of equation (16),

ẋ5 < −x1x5. (21)
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So

x1(t) >
1

1 + 1−x1(0)
x1(0)

e−(1−p)t
(22)

x3(t) > x3(0)e
−(1−p)

∫ t

0
x1(s)ds (23)

x4(t) > x4(0)e
−(1−p)

∫ t

0
x1(s)ds (24)

x5(t) < x5(0)e
−
∫ t

0
x1(s)ds (25)

x5(t) > x5(0)e
−t. (26)

For sufficiently large N , initial points in the interior can be made to satisfy x1(0) >

1
N−1

. Observe that �4 > �3+
(

1− 1
N

)

x1−
1
N
x3. As long as the dynamics as described

by equation (13) apply, x1(t) ≥ x1(0), and so �4(t) > �3(t).

While x5(t) >
1− 1

N

N
, inequality (25) implies e−

∫ t

0
x1(s)ds >

1− 1

N

Nx5(0)
. So, using inequal-

ity (24),

x4(t) > x4(0)

(

1− 1
N

Nx5(0)

)1−p

. (27)

We can ensure 1− 1
N

> x5(0) for initial points in the interior of the strategy space by

taking N sufficiently large, so inequality (27) simplifies to x4(t) > x4(0)
(

1
N

)1−p
, and

then by inequality (12), we get x4(t) >
lnN
N

. So �2(t) < 0 as long as x5(t) >
1− 1

N

N
.

Let tc = t : �1(t) = �4(t). Thus, dividing both sides by N and dropping a positive

term from the right side, we have x5(tc) >
1− 1

N

N
. This means �4(t) > �2(t) and

�4(t) > �3(t) for all t ≤ tc. The dynamics described by equations (17) through (21)

hold until tc, at which point �4 becomes �max.
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Because �4(t) > �3(t) for all t ≤ tc, we can also conclude that

x4(tc)

x4(0)
>

x3(tc)

x3(0)
. (28)

We know that x5(tc) < 1
N
, too. Inequality (26) then implies e−tc < 1

Nx5(0)
, and

using inequality (22), we come to

x1(tc) >
1

1 + 1−x1(0)
x1(0)

(

1
Nx5(0)

)1−p
. (29)

After tc, while �4 remains �max, the linear combination dynamics yield

ẋ1 = x1

(

p
�1 − �̄

N2 + �4

− (1− p)x4

)

ẋ3 = x3

(

p
�3 − �̄

N2 + �4
− (1− p)x4

)

ẋ4 = x4

(

p
�4 − �̄

N2 + �4
+ (1− p)(1− x4)

)

.

Let

f(t) = p
�3 − �̄

N2 + �4
− (1− p)x4,

so that ẋ3 = x3 f(t). For t ≥ tc,

x3(t) = x3(tc)e
∫ t

tc
f(s)ds. (30)

Because �3 ≤ 1 and �1 ≥ 0, we know that ẋ1 ≥ x1

(

f(t)− p 1
N2

)

. So

x1(t) ≥ x1(tc)e
∫ t

tc
f(s)ds ⋅ e−

p

N2
(t−tc). (31)

As �4 > �3, we know ẋ4 > x4 (f(t) + 1− p), and

x4(t) ≥ x4(tc)e
∫ t

tc
f(s)ds ⋅ e(1−p)(t−tc). (32)
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Recall that �4 > �3 if (1−
1
N
)x1 >

1
N
x3. Putting together equations (30) and (31),

this holds as long as (1 − 1
N
)x1(tc)e

−
p

N2
(t−tc) > 1

N
(1 − x1(tc)). Plugging in inequal-

ity (29) and arranging terms, we find that �4 > �3 if

e−(t−tc) >

[

1

N − 1

1− x1(0)

x1(0)

(

1

Nx5(0)

)1−p
]

N2

p

. (33)

Note that we also obtain �4 > �3 if
1
N2x4 >

1
N
x3. Putting together equations (30),

(32) and (28), this holds when 1
N2x4(0)e

(1−p)(t−tc) > 1
N
x3(0). Arranging terms, we

obtain �4 > �3 when

e−(t−tc) <

( 1
N2x4(0)
1
N
x3(0)

)

1

1−p

. (34)

By combining equations (33) and (34), we can be sure �4 > �3 for all t if

(

x4(0)

Nx3(0)

)
1

1−p

>

[

1

N − 1

1− x1(0)

x1(0)

(

1

Nx5(0)

)1−p
]

N2

p

. (35)

Inequality (35) holds for any interior initial point when N is sufficiently large because

the right hand side of the inequality decays exponentially in N .

While �4 = �max, obviously x4 is increasing, and so �2 remains negative for all t

after tc. Thus, action 4 remains the best response forever, and the linear combination

dynamics locates the equilibrium in which only action 4 is played.
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