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Abstract

When players in a game can communicate they may learn each other�s strategy. In such

situations, it is natural to de�ne a player�s (pure) strategy as a mapping from what he has learned

about the other players�strategies into actions. In this paper we investigate the consequences

of this possibility in two player games and show that it expands the set of equilibrium outcomes

the players can reach. When strategies are completely observable, any feasible and individually

rational outcome can be sustained in equilibrium. If communication fails to reveal the players�

strategies with some positive probability, the set of equilibria may be smaller. We demonstrate

this in the prisoner�s dilemma and �nd the exact level of cooperation the can be sustained in

equilibrium for any set of parameters.
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1 Introduction

Standard game theory usually ignores the fact that people in strategic situation often have the

opportunity to communicate before they choose their actions. During this communication, players

may reveal their true strategies to their opponents, sometime intentionally and sometimes despite

their will. When this information is detected by the other players, it may have some e¤ect on the

action they choose in the game itself. For this reason, a player may want to condition his own

actions on the information he learns from his opponents during the interaction they have.

To keep things simple we focus on two player games. We assume that during a conversation, or

some other form of interaction, each player either receives a correct signal about the other player�s

strategy (with some known probability), or learns nothing. Since it�s not implausible to assume

that the probability of detecting the opponent�s strategy depends on the quality (or some other

aspect) of the interaction the players have, we allow for correlation between the probabilities of the

signals received.

In a game with Real Talk we de�ne a strategy to be a function from the set of the other player�s

strategies and the empty set, which represents the possibility of learning nothing, into actions.

Suppose that two players play the game G with sets of actions A1 and A2, respectively. Then, if we

denote the set of player 2�s strategies by S2, it follows that a (pure) strategy for player 1 is given by

a mapping s1 : S2 [ f;g ! A1, and similarly, a (pure) strategy for player 2 is given by a mapping

s2 : S1 [ f;g ! A2. Thus, the introduction of communication implies that the players�strategies

belong to a richer set than under "standard games", where players�pure strategies are given by

S1 = A1 and S2 = A2, respectively.

Clearly, our de�nition of a strategy is circular: in order to de�ne a strategy for player 1 we need

to know what is the set of strategies of player 2, but in order to de�ne a strategy for player 2 we need

to know what is the set of player 1�s strategies. We do not attempt to construct, or characterize,

strategy sets for the two players in this paper. However, such pairs of mutually consistent strategy

sets exist. One trivial example is de�ning for any action ai 2 Ai a constant strategy si 2 Si which
always plays ai regardless of what player i learns about player j�s strategy. In this case the game

with Real Talk is equivalent to the original game G.

It should be emphasized however, that regardless of the way in which we de�ne the sets of the

players� strategies, at least for one player it is a proper subset of all the possible functions from

his opponent�s strategies to his own actions. To see this, suppose that each player has at least two

possible actions and that player 2 has M strategies (M can be �nite or not). Thus, if player 1 had

all possible functions from player 2�s strategies into actions as pure strategies, he would have had

a minimum of 2M+1 strategies. The same logic implies that player 2 should have at least 22
M+1

pure strategies. This implies a contradiction, because there is no M , �nite or not, that satis�es the

equation M = 22
M+1

.

In the range between games with Real Talk with strategy sets that include only trivial strategies,

and games with Real Talk with strategy sets that are too large to exist, there exist some interesting

examples. To illustrate how the possibility of real talk can expand the set of equilibrium outcomes,
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consider the following example. Suppose that the game G is the prisoner�s dilemma (PD), where the

actions for each player are either to cooperate, C, or defect, D. Let s be a strategy that plays the

action C if the other player chooses s as well, and plays D otherwise. Let S1 = S2 = fsg. Clearly,
playing s by both players is an equilibrium, because s is the only strategy. However, even if S1 and

S2 are enlarged so they include any other strategies, playing s still remains an equilibrium, which

means that the pro�le action selected by the players would be (C;C). This example shows that our

setting broadens the set of equilibria, since cooperation is not an equilibrium in the regular game

of PD.

However, the ability of s in the above example to reach full cooperation relied on the fact that

both players know exactly what strategy their opponent is about to play. When this is not the

case, that is, when the players may fail to learn their opponent�s strategy, this might not work. If

the probability for not learning anything is large enough, the players might exploit this and not

cooperate, hoping that their opponent will not know that they defected. Therefore, the ability of

Real Talk to expand the set of equilibria depends both on the speci�c game the players are playing,

and both on the probability for detecting the opponent�s strategy.

Similarly, the correlation between the signals also has some e¤ect on the game�s outcome. Know-

ing that if a one player learns his opponent strategy, then his opponent learns his, may allow players

to choose strategies that they could not have chosen otherwise. Of course, this is true also in the

other direction - outcomes that are possible when there�s no correlation might not be an equilibrium

when the correlation is higher.

The plan of the paper is as follows. Section 2 consists of a review of literature that relates to

this paper. In Section 3 we present the Real Talk model and basic de�nitions. In section 4 we

provide several folk theorem like propositions, analyzing the possible payo¤s that may be sustained

in equilibrium. Section 5 analyzes the prisoner�s dilemma with Real Talk. Section 6 concludes.

2 Related literature

This paper concerns Real Talk - true information that is transferred between two people in a

conversation. This is very di¤erent from Cheap Talk, which Farrell and Rabin (1996) describe as

"costless, nonbinding, nonveri�able messages that may a¤ect the listener�s beliefs", in their review

of this literature. Even though Real Talk is costless, the messages (or signals) that pass between

the players are true, and in that sense are both binding and veri�able. It is also important to point

out that adding Real Talk to a game may expand the set of equilibria in games where Cheap Talk

fails to. The best example is the PD: Cheap talk does not add a single equilibrium to the game,

whereas in Real Talk player can achieve full cooperation.

Real Talk is also di¤erent from Aumann�s correlated equilibrium (1974), in which players con-

dition their actions on a public signal: in Real Talk a strategy assigns an action to every strategy

of the other player, while in correlated equilibrium it assigns one to any observation a player can

make of the public signal. Moreover, as in Cheap Talk, cooperation cannot emerge in a correlated
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equilibrium of the PD.

The rest of this section describes other works which relate to the current one.

2.1 Computer Programs

Our notion of strategy can be interpreted in several ways, one of which is as thought procedure, or

way of thinking. Under this interpretation, each player receives some information about the way the

other player thinks, and based on this information chooses an action. This procedure, receiving a

signal and choosing an action, is the player�s own thought procedure, and in turn may be discovered

by the other player. If one adopts this interpretation, it is possible to think about each player as a

computer that runs a certain program, or a Turing machine. Each computer receives the program

that runs on the other computer as input, and it�s output is an action.

Howard (1988) analyzes a game in which two computer programs play the prisoner�s dilemma

against each other. He shows that it is possible to write a program that receives the code of the

program running on the other computer as input, and tells if it is identical to itself or not. This

program can be slightly modi�ed to also choose an action as output. In such a way, Howard

constructs a program that plays C when receiving itself as an input, and D otherwise. Clearly, if

both computers run this program, it will lead to an equilibrium in which both computers cooperate.

Moreover, it is possible to write two di¤erent programs, P and Q; such that P recognizes Q, and

vice versa. By doing so other equilibria may be sustained.

Tennenholtz, in his paper "Program Equilibrium" (2004), shows that in this setting any payo¤

which is both individually rational and feasible can be achieved in equilibrium. This result is

similar to the Folk Theorem in repeated games, with one distinction: since in Tennenholtz�s model

each player plays a mixed strategy that is independent of the other player�s strategy, it might be

impossible to support a payo¤ pro�le that is achieved by a correlated distribution over the game�s

possible outcomes.

Fortnow (2009) extends Tennenholtz�s program equilibrium to an environment in which the

player�s payo¤s are discounted based on the computation time used. He also proves a full Folk

Theorem (that is, including payo¤s obtained only by correlated mixed strategies), in which for any

probability distribution over the game�s outcomes, D, and for any �, an there is a Nash equilibrium in

the mixed program equilibrium game where each player�s expected payo¤ is within � of his expected

payo¤ over D.

2.2 Critique of This Literature

One reason for not thinking of players as computer programs, or Turing machines, is the existence

of some important impossibility results. Binmore (1987) shows that a computer program cannot

"predict its opponent�s behavior and simultaneously participate in the action of the game". In

more detail, Binmore describes a situation in which each program receives an input that includes

its own program, the opponent�s program and the rules of the game. Its expected output is both a

recommendation for an action to be played, and a prediction of what would be the recommendation
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given by the other program. The result is that it�s impossible to write a program that will always

predict correctly the recommendation of the other program.

Note that in Binmore�s setting, the program was only expected to predict correctly the other

program�s recommendation - it wasn�t required that the recommendation would be optimal given

the program�s prediction. That is, the programs were allowed to recommend actions that are not

best response to their prediction, thus making it di¢ cult for the other program to predict them

correctly. However, Anderlini (1990) showed that even if we restrict ourselves to programs that

always recommend an action that is a best response to the prediction, it is impossible to construct

a program that will always predict correctly the other program�s recommendation. The positive

result is that if one allows the programs to run inde�nitely (i.e., entering a never-ending loop),

then it is possible to write a program that gives a correct prediction when it does halt. See also

Rubinstein (1998).

2.3 Delegation Models

Kalai et al. (2009) o¤er a similar model to the program equilibrium, in which instead of computer

programs each player chooses a commitment device. A commitment device is a function that takes

the other player�s commitment device as its input, and returns a strategy (a probability distribution

over the player�s actions). In equilibrium, both players choose the optimal commitment device given

the other player�s choice. The authors prove a full Folk Theorem for two players games. That is,

they show that it is possible to achieve any individually rational and feasible payo¤, including

payo¤s that are obtained through correlated mixed strategies.

Peters and Szentez (2009) explore games in which instead of a commitment device, each player

writes a contract that speci�es what action to be played given any of the opponent�s contracts.

Peters and Szentez go a step further and prove a similar folk theorem for any (�nite) number of

players. Moreover, they show that in an environment with incomplete information, this result does

not hold. That is, there are payo¤ vectors that can only be obtained by a centralized mechanism

designer.

The di¤erence between the type of models mentioned above and the current one can be best

seen in Fershtman et al. (1991). In their model, players can use agents to play on their behalf. If

this delegation is done by an observable contract, they show cooperation can emerge and prove a

full folk theorem.

In all these models, the players don�t actually play the game themselves - the game is played

by a computer program, a commitment device or an agent. Whereas in our game, the players

themselves play, without the aid of an additional factor. Another important di¤erence is that while

the computer programs or contracts are completely visible, we assume noisy signals. That is, with

some probability players might not know the strategy of their opponent.
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2.4 Informal Models

One informal commitment model that does not involve any external mechanisms is Frank�s (1998)

Commitment Model. In this model the commitment devices are emotions. It is argued that feelings,

such as love, anger or revenge, can sometimes make people act in way that are not in their best

interests. Hence, a person�s feelings commit him to act in a certain way. Since psychological research

shows that emotions are both observable and hard to fake (see Frank (1988) and references within),

an agent can use them as signals in a game. This enables each player to discern his opponents

emotional predispositions through physical and behavioral clues, and play accordingly.

Frank reports some experimental results that show that when subjects are allowed to interact

for 30 minutes before playing the PD, they are able to predict quite accurately their opponent�s

behavior. Moreover, roughly 84% of the subjects that predict that their opponent will cooperate

(defect), cooperate (defect) themselves. He also reports that when players are allowed to interact

only for 10 minutes, or when not allowed to make any promises, the level of cooperation drops, as

does the accuracy of the predictions.

A similar approach is explored by Gauthier (1986). He proposes an environment in which there

are two types of agents: straightforward maximizers (SM) and constrained maximizers (CM). SM

simply maximize their utility. CM, however, are more sophisticated. They take into account also

the utilities of the other players and base their actions on a joint strategy: "A CM is conditionally

disposed to cooperate in ways that, followed by all, would yield nearly optimal and fair outcomes,

and does cooperate in such ways when she may actually expect to bene�t". Gauthier assumes that

an agent�s type is known to everybody else (or at least with some positive probability). Thus, in

the PD, when a CM meets another CM, they will both cooperate. In any other interaction between

two players, they will both defect.

These last two models are very similar to the model we propose. The main contribution of this

paper is to take these ideas and to incorporate them in a formal model.

2.5 Non Simultaneous Models

A di¤erent line of research that relates to this work is one in which players do not play simultaneously.

That is, one player chooses a strategy and only then the second chooses his, conditional on the �rst�s.

One example for such a model is Howard�s (1971) Metagame model. A 2-Metagame is a game

in which player 1 chooses a "regular" strategy (an action), while player 2 chooses a function from

player 1�s actions to his own action space. For instance, in the PD, player 1 can either play C or D,

and player 2 can play CC;DD;CD;DC where the �rst letter describes the action he plays if player

1 plays C and the second is the action to be played if player 1 plays D. The strategy CD can be

interpreted as "I will cooperate if, and only if, you will". However, (C;CD) is not an equilibrium

since given the fact that player 1 plays C; player 2 will deviate to DD.

Similarly, a 1-2-Metagme is a game in which player 2�s strategies are functions from player 1�s

actions to his own, and player 1�s strategies are functions from player 2�s strategies, as just de�ned,

into actions. In the PD example, since player 2 has 4 strategies, player 1 now has 16. Interestingly,
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now (DDCD;CD) is an equilibrium yielding cooperation by both players. In Howard�s words:

"Player 2 says "I�ll cooperate if you will" (implying "not if you won�t," i.e., the policy CD), and 1

replies "in that case (meaning if CD is your policy) I�ll cooperate too (implying "not otherwise,",

i.e., the policy DDCD).".

Another model of that nature is Solan and Yariv�s (2004) model of espionage. In their model,

�rst player 2 chooses an action and then player 1 can purchase information about that strategy.

In the next step player 1 receives some signal with some probability about the action player 2 had

chosen. Finally, depending on the information he received, player 1 chooses an action. Solan and

Yariv provide a few examples for games with espionage and prove the existence of an equilibrium

with espionage under certain restrictions.

There are two main di¤erences between the espionage model and this paper, in addition to the

fact that the strategies are not chosen simultaneously. First, in Solan and Yariv only one player

can obtain information about the other player�s strategy, while in this model both can. Second, in

our model the players bear no cost in obtaining the information, unlike the costly espionage.

Espionage also appears in Matsui (1989), but in a setting of an in�nitely repeated game. In

the beginning, each player chooses a strategy for the entire game. Then, information may leak so

that one of the players might be informed of the other player�s strategy. If this happens, the player

who received the information (and only him) may revise his strategy. Then, the actual repeated

game begins. The fact that the game repeats enables the player who acquired the information to

signal this fact to his opponent, and then the two players can switch to Pareto e¢ cient strategies.

Matsui shows that any subgame perfect equilibrium pair of payo¤s is Pareto e¢ cient as long as the

probability of information leakage is small enough. He also illustrates this in the PD, and shows

that full cooperation can be achieved.

Matsui�s model resembles the current model in that the information about one�s strategy may

be used by the other player. Other then that, the models a very di¤erent (one shot vs. repeated

game, one sided espionage vs. two sided, simultaneous choice of strategies vs the possibility to

revise one�s strategy after obtaining the information).

2.6 Additional Experimental Evidence

The prisoner�s dilemma in general, and the a¤ect of communication on cooperation in particular,

have been the subject of many experiments in past half a century. Sally (1995) has conducted a meta-

analysis of experiments from 1958 to 1992. He had combined data from 37 di¤erent experiments

and showed that communication increases the rate of cooperation by roughly 40%. Interestingly,

communication was one of a very small group of variables that has a signi�cant a¤ect on cooperation

(see Sally (1995) and references within).

Kalay et. al. (2003) have analyzed data obtained from a TV game, similar to the PD, in which

two players accumulate together a substantial amount of money, and then have to divide it between

them. The division process is as follows: the players are allowed to communicate which each other

for several minutes, and afterwords each has to choose an action - cooperate or defect .If they
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both cooperate, each obtains half of the money they accumulated. If one cooperates and the other

defects, the one that defected receives everything and the other nothing. In case both defect, both

receive nothing. Like in the PD, the dominant strategy is to defect. However, 42% of the time

the players cooperated. Moreover, the data reveals a correlation between the actions chosen by the

two players: 21% of the time both players cooperated, compared to 17:64% if there had been no

correlation. This implies a correlation coe¢ cient of 0:14.

As mentioned earlier, these results cannot be explained by traditional game theory, nor by cheap

talk or correlated equilibrium. Moreover, these results are obtained without a mediator, such as

a contract, commitment device or a computer program. This paper provides a model that may

explain such results in a simple environment where no external mechanism are use, other that

communication.

3 The Real Talk Model

Let G =< A;� > be a two-person game in normal form where:

� A = A1 �A2: Ai is a non-empty �nite set of actions for player i, (i = 1; 2).

� � = �1 ��2: �i is the payo¤ function for player i, �i : A1 �A2 ! R (i = 1; 2).

Let �i be a mixed action for player i, i.e., a probability distribution over Ai, and �i(�1; �2)

be the expected payo¤ for player i when the mixed actions (�1; �2) are played. A mixed action

Nash equilibrium in G is a pair of mixed actions, (��1; �
�
2) such that neither player can increase his

expected payo¤ by deviating to another (mixed) action. Formally:

De�nition 1 A mixed action Nash equilibrium in G is a pair of mixed actions, (��1; �
�
2) such that

for i = 1; 2: �i(��i ; �
�
�i) � �i(�i; ���i) for any �i 2 �(Ai).

A game with real talk, bG, that is induced by the game G, consists of 3 stages and is played as
follows:

1. Both players choose a strategy simultaneously.

2. Each player may, or may not, observe his opponent�s chosen strategy.

3. Each player uses its own strategy to choose an action in G.

The strategies that the players choose in the �rst stage will determine what action they play in

the last stage given the information they have, or have not, learned in the middle stage. Note that

the strategies themselves are �xed, and cannot be changed once chosen. Formally:

9



De�nition 2 A pure strategy for player i in the game with Real Talk bG that is induced by G is

a function from S�i [ � to �(Ai), where S�i is the opponent�s strategy set, � represents learning
nothing and �(Ai) is a probability distribution over Ai. That is,

Si � ff : S�i [ �! �(Ai)g

Since si 2 Si is a function, si(s�i) denotes the action that player i plays when receiving the

signal s�i, and s(�) denotes the action player i plays when receiving no signal.

Proposition 1 For at least one player Si 6= ff : Sj [ �! �(Ai)g.

Proof. Otherwise S1 = j�(A1)jjS2j+1 and S2 = j�(A2)jjS1j+1 which is impossible by Cantor�s
Theorem.

Note that:

1. It is possible to construct �nite strategy spaces, which contain as few as just one strategy for

each player. For example, Si = fsig where for each player, si is a strategy that always plays
some pure action ai 2 A1.

2. It is possible to construct in�nite strategy spaces such that Si includes all function from S�i[�
to �(Ai) that can be described in �nite sentences (using G½odel encoding). See Peters and

Szentes (2009):

We assume that the probability that each player observes his opponent�s strategy in the second

stage is the same for both players, and that the two probabilities may be correlated.

De�nition 3 The game with Real Talk, bG, that is induced by G, is a tuple (G;S; p; �) where:
� G is a two-person game in normal form.

� S = S1 � S2 are the sets of the players�feasible pure strategies.

� p 2 [0; 1] is the probability that each player observes the other player�s strategy.

� � 2 [0; 1] is the correlation coe¢ cient between the two probabilities.

Note that even though technically the correlation coe¢ cient could be also negative, under our

interpretation it makes less sense: if one player detects his opponent�s strategy in a conversation,

then it usually increases the probability that the opponent detects his, rather than decreases it.

After a strategy pro�le is chosen, there are four possibilities for the information the players have:

both player receives a signal, player 1 receives a signal and 2 does not, player 2 receives a signal and

1 does not, and none of the players receives a signal. These four cases can be regarded as states of

nature in games with incomplete information. The following table shows the probabilities for the

four cases:
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signal no signal

signal p2 + �p (1� p) p(1� p)� �p (1� p)
no signal p(1� p)� �p (1� p) (1� p)2 + �p (1� p)

As would be expected, correlation increases the probabilities along the main diagonal, and

decrease those in the secondary diagonal, by �p (1� p).
If a strategy pro�le (s1;s2) is chosen by the two players, each one plays one of two possible

actions, according to the signal he receives. The action pro�les for the four di¤erent possibilities

are shown in the following table:

signal no signal

signal (s1(s2); s2(s1)) (s1(s2); s2(�))

no signal (s1(�); s2(s1)) (s1(�); s2(�))

Let b�i(s1;s2) be the expected payo¤ for player i if the strategies chosen by player 1 and player 2
are s1 and s2, respectively. Using the above two tables and the action payo¤ function, �, we obtain:

b�i(s1;s2) =
=
�
p2 + �p (1� p)

�
��i(s1(s2); s2(s1)) + [p(1� p)� �p (1� p)] ��i(s1(s2); s2(�))+

+ [p(1� p)� �p (1� p)] ��i(s1(�); s2(s1)) +
�
(1� p)2 + �p (1� p)

�
��i(s1(�); s2(�)):

As mentioned before, the simplest possible strategies are constant mixed actions, i.e. ones that

always play an action ai 2 �(Ai) regardless of what player i learns about player j�s strategy. If
both players choose such strategies, then their payo¤ would be: b�i(s1;s2) = �i(a1; a2).
De�nition 4 We say that a strategy space S is natural if it contains all constant mixed actions.
That is, for any action �i 2 �(Ai), the strategy set Si contains a strategy that always plays the
(mixed) action �i, regardless of the opponent�s strategy, for i = 1; 2.

Similarly to other models, the solution concept we will use is a Bayesian Nash equilibrium,

which is simply a Nash equilibrium in our strategies space. Each player responds optimally to his

opponent�s strategy choice, taking into account p and �, and maximizes his expected payo¤ over his

possible strategy choices. Formally:

De�nition 5 A pure strategy Nash equilibrium in the game with Real Talk bG is a pair of strategies

(s�1; s
�
2) such that b�1(s�1; s�2) � b�1(s1;s�2) for any s1 2 S1 and b�2(s�1; s�2) � b�2(s�1; s2) for any s2 2 S2.
The following proposition follows immediately from these de�nitions and requires no proof:

Proposition 2 If S is natural then the players in the Real Talk game, bG, that is induced by G, can
play the original game G. That is,
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1. Every strategy in G has a corresponding (constant) strategy in bG.
2. Any mixed action Nash equilibrium in the original game G, (��1; �

�
2), has a corresponding Nash

equilibrium in the game with Real Talk bG, (s�1; s�2), such that s�i � ��i .

Note that this does not imply that all Nash equilibria in bG are in constant strategies.

4 A Real Talk Folk Theorem

Let G be a two person game and let vi be the minmax value for player i G, i.e.,

vi = min
��i2�A�i

max
ai2Ai

�i(ai; ��i).

De�nition 6 We say that a payo¤ for player i, �i, is Individually Rational if �i � vi.

Let  i be player i�s minmax strategy. That is, when  i is played, player �i can achieve a payo¤
of at most v�i. Formally,  i is a member of argmini2Ai maxa�i2A�i ��i(ai; a�i).

Let �i be a probability distribution over Ai, and �i(ai) the probability of the action ai, deter-

mined by �i.

De�nition 7 We say that a payo¤ pro�le (�1; �2) is feasible if (�1; �2) =
X
a12A1

X
a22A2

�1(a1)�2(a2)�(a1; a2).

Note that this de�nition is not standard because of independent mixing of actions, and it does not

always coincide with the standard de�nition of a feasible payo¤ pro�le. (The standard de�nition

requires (�1; �2) to be a convex combination of all outcomes in G, that is
X
�2A

�(a1; a2)�(a1; a2)

where � is a probability distribution over the joint action space A.)

For example, consider the following payo¤ matrix:

L R

T 1; 1 1; 0

B 0; 0 0; 1

In the standard de�nition, a feasible payo¤ pro�le is a convex combination of these four payo¤s, and

the set of all feasible payo¤s is the unit square. However, according to our de�nition the feasible

payo¤s are depicted in the following graph:
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which is only a subset of the unit square.

Proposition 3 (Folk Theorem) For any game G there exists a game with Real Talk, bG, such that
any individually rational and feasible payo¤ pro�le (�1; �2) in G is the payo¤ pro�le of some pure

Nash equilibrium in bG.
Proof. Let (�1; �2) be an individually rational and feasible payo¤pro�le. Let �1 and �2 be probabil-
ity distributions over A1 and A2, respectively, for which (�1; �2) =

X
a12A1

X
a22A2

�1(a1)�2(a2)�(a1; a2)

(note that there can be more then one pair of probability distributions yielding the same payo¤).

De�ne s(�1;�2)1 and s(�1;�2)2 in the following way:

s
(�1;�2)
1 (s

(�1;�2)
2 ) = �1 and  1 otherwise (that is, if player 1 receives a signal which is s

(�1;�2)
2 , he

plays �1. If he receives a di¤erent signal, or no signal at all, he plays  1). In a similar way, de�ne

s
(�1;�2)
2 (s

(�1;�2)
1 ) = �2 and  2 otherwise.

Let S1 and S2 be arbitrary mutually consistent strategy sets such that s
(�1;�2)
1 2 S1 and s(�1;�2)2 2

S2 for all individually rational and feasible payo¤s (�1; �2). Note that if S = S1� S2 contains only

these strategies it is mutually consistent. However, it can be much larger. A trivial example is

including all constant strategies, making S natural.

Let bG = (G;S; 1; 1). That is bG is the Real Talk game that is induced from G when S1 � S2 is

the strategy set, p = 1 and � = 1.

The strategy pro�le (s(�1;�2)1 ; s
(�1;�2)
2 ) is a Nash equilibrium in bG for any (�1; �2). To see this,

assume that player 2 plays s(�1;�2)2 . If player 1 plays s(�1;�2)1 then the players will play (�1; �2);

yielding a payo¤ of �1 for player 1. If player 1 deviates to any other strategy, player 2 will play  2
against him, yielding player 1 a payo¤ of no more then v1. However, since (�1; �2) is individually

rational, �1 � v1 and therefore �1 is at least as good as player 1�s payo¤ if he chooses to deviate.

The same argument holds for player 2. Since no player has an incentive to deviate, (s(�1;�2)1 ; s
(�1;�2)
2 )

is a Nash equilibrium.

Consider for example the following game matrix:

L R

T 3; 1 1; 0

B 2; 0 0; 1

The set of feasible payo¤s according to standard de�nition is:
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But according to our de�nition, it is only this subset:

Clearly, in this game T is the dominant strategy for player 1, and if he does indeed play T , then

player 2 will play L. Therefore, (T;L) is the only Nash equilibrium in this game, and the payo¤s

are (3; 1).

The minmax values are v1 = 1 and v2 = 1
2 . The minmax strategies (minimizing the opponent�s

payo¤s) are playing T and B with probability 1
2 for player 1 and R for player 2.

Hence the set of payo¤s that can be supported in a Real Talk Nash equilibrium (feasible and

individually rational) is:

which of course includes the �regular�Nash equilibrium payo¤ pro�le.

Note that the regular Nash equilibrium is Pareto optimal - it yields both player the maximal

possible payo¤s. All the other Real Talk equilibria actually lower the payo¤s, and since they are also

more complicated, they seem not to make much sense. However, an example without this problem

can be easily obtained if one reverses the payo¤s for player 2:

L R

T 3; 0 1; 1

B 2; 1 0; 0

In this case the only Nash equilibria is (T;R) and the payo¤s are (1; 1). The set of feasible outcomes

is:
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and the set of payo¤s that can be supported in a Real Talk Nash equilibrium is:

Clearly, this set includes a payo¤ vector that weakly dominates the original one, (2; 1), as well

as other payo¤s that increase the payo¤ of player 1 but decrease player 2�s.

If we require the induced Real Talk game bG to have p < 1, then the proposition doesn�t hold

since the threat of punishing a deviation is weaker. In the extreme case, when p = 0; no signals are

ever received, which means players can�t condition their actions on their opponent�s strategy. In

other words, the players simply choose a probability distribution over the actions in G. This makes

the game with Real Talk bG very similar to the original game G, even though a strategy is still a

function from the opponent�s strategies to actions, rather than simply an action. In some cases the

game with Real Talk bG becomes equivalent to G:

Proposition 4 Any game with Real Talk, bG, that is induced by G, that consists of a natural strategy
set S and p = 0, is equivalent to the original game G.

Proof. If p = 0 and a player chooses a strategy s, then the only possible input that the strategy
would receive is �, and the action that will be played in G is s(�) with probability 1 (players play

s(�) regardless of the opponent�s strategy). Therefore, by choosing a strategy all the players do

is simply choose a probability distribution over their own action space, Ai. Since S is natural, for

every probability distribution in Ai, player i has a constant strategy that always plays it (of course,

there may be many other strategies that play the same mixed action when receiving no signal, but

they are all equivalent in this case). Hence, strategically the players face exactly the same choices

in bG as they do in G. Clearly, the feasible payo¤ pro�les and Nash equilibria are the same in the

two games:
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This proposition is very similar to proposition 1, except for the fact that in the general case,

if S is natural, then the players can play the original game G, whereas when p = 0 they have no

other choice.

Note that if p = 0 and S is not natural, then each player may have a smaller set of actions,

which is the union of all probability distributions that are played by his strategies when they do

not receive a signal. That is: [s2Sis(�). In this case, instead of adding more sophistication to the
game, Real Talk may actually produce a more degenerate version of G, depending on Si.

When 0 < p < 1 things become more complicated. The set of feasible payo¤ pro�les and

equilibria depend on the exact values of p and � (which plays no role when p 2 f0; 1g), and on the
game itself. However, the following two propositions hold:

Proposition 5 (Reverse Folk Theorem 1) Let bG be a game with Real Talk that consists of a nat-

ural strategy space S. If (�1; �2) is the payo¤ pro�le of a pure Nash equilibrium in bG, then it is
individually rational.

Proof. Suppose that (�1; �2) is the payo¤ pro�le of a pure Nash equilibrium in bG that is not

individually rational. Then for some i, �i < vi. Consider a deviation of player i to a constant

strategy which plays his maxmin strategy in G. By de�nition, his payo¤ would be at least as high

as his maxmin payo¤. But since the maxmin and minmax payo¤s are identical, his payo¤ would be

at least vi. Since a deviation is pro�table, the original payo¤ pro�le was not an equilibrium.

If the game is not natural, however, the strategy sets might not be rich enough to enable the

players to deviate to a strategy that would induce the minmax payo¤. As a trivial example we

can consider the game mentioned above, where S1 contains only the constant strategy T and S2
contains only the constant strategy L. The only possible payo¤ is (3; 0). This is a Nash equilibrium

but not individually rational for player 2. Naturally, this is an extremely degenerate example, but

more elaborate examples that have this property may be easily created. If, however, the players do

have a constant strategy that plays their maxmin strategy in G, then the proposition holds even if

S is not natural.

Proposition 6 (Reverse Folk Theorem 2a) For any game with Real Talk bG in which p = 1, if

(�1; �2) is the payo¤ pro�le of some pure Nash equilibrium in bG, then it is feasible.
Proof. When p = 1 both players always detect their opponent�s strategies. Each player plays

the action determined by the strategies with probability 1. Since the players�actions are simply

a probability distribution over their own action spaces, they are independent. By de�nition, this

induces a feasible payo¤ pro�le.

Proposition 7 (Reverse Folk Theorem 2b) For any game with Real Talk bG in which � = 0, if

(�1; �2) is the payo¤ pro�le of some pure Nash equilibrium in bG, then it is feasible.
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Proof. When � = 0 the signals the players receive are independent. Since the players�actions are
simply a probability distribution over their own action spaces, they are independent. Hence, each

player plays an independent lottery conditioned on an independent signal. These are compound

independent lotteries, which in turn are also independent. By de�nition, this induces a feasible

payo¤ pro�le.

When � 6= 0 this argument does not hold, since the players condition their (independent)

lotteries on a correlated signal, which induces a correlated compound lottery. And indeed, there

are games and payo¤ pro�les, that are obtained in equilibrium, which are not feasible according to

our de�nition (clearly, any payo¤ pro�le is feasible according to the standard de�nition).

To see that, consider the game usually referred to as the �battle of the sexes�:

L R

T 1; 2 0; 0

B 0; 0 2; 1

This game has three Nash equilibria: (T;L), (B;R), and ((13 ;
2
3); (

2
3 ;
1
3)). The payo¤s are (1; 2),

(2; 1) and (23 ;
2
3), respectively. The set of feasible payo¤s is:

The minmax value for both players is 23 , hence the set of feasible and individually rational payo¤s

is:

Let bG be the induced Real Talk game with p 2 [0; 1] and � = 1. In this case both players see

each other with probability p, and with probability (1� p) neither one of them does. Consider the

pair of strategies (s1; s2) de�ned below:

s1(s2) = T; s1(�) = B and otherwise s1(�) = T .

s2(s1) = L; s2(�) = R and otherwise s2(�) = L.
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Let S be a strategy space that contains (s1; s2). If (s1; s2) is played, then the payo¤ pro�le is

p � (1; 2)+ (1� p) � (2; 1). This is a point on the line connecting (1; 2) and (2; 1), which clearly is not
feasible unless p 2 f0:1g. However, this is indeed a Nash equilibrium. Assume player 2 plays s2 and
consider a possible deviation for player 1. If he deviates to a strategy that plays di¤erently when

receiving a signal, then he would play B with some positive probability while player 2 continues to

play L with probability 1. If he deviates to a strategy that plays di¤erently when not receiving a

signal, then he would play T with some positive probability while player 2 continues to play R with

probability 1. In both cases, his payo¤would be strictly lower. The same argument holds for player

2.

This example shows us that when p is less than 1 and there is a positive correlation between

the signals the players receive, they can use the signal to correlate between their actions and obtain

higher payo¤s than they could obtain otherwise (in this case, as high as 1:5 each when p = 1
2).

5 Cooperation in the Prisoner�s Dilemma

The general form of a Prisoner�s Dilemma payo¤ matrix is:

C D

C b; b d; a

D a; d c; c

where a > b > c > d. However, without loss of generality, one can subtract d from all payo¤s and

divide by c in order to obtain a matrix of the form:

C D

C b; b 0; a

D a; 0 1; 1

where a > b > 1. We will consider the last version as the general case of the Prisoner�s Dilemma.

Clearly, the only (mixed) action Nash equilibrium in this game is (D;D) regardless of the exact

values of a and b. However, for reason that will become clear shortly, assume that the players use

mixed actions: player 1 plays C with probability x 2 [0; 1] and player 2 plays C with probability

y 2 [0; 1]. The expected payo¤ for player 1 is therefore:

� = x � y � b+ (1� x) � y � a+ (1� x) � (1� y).

If we rearrange this equation we obtain:

� = x � y � (b� a+ 1)� x+ y � (a� 1) + 1.

Note that @�
@x = y � (b � a + 1) � 1 and @�

@y = x � (b � a + 1) + (a � 1). It is easy to verify that
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under the assumptions on the values of a and b, @�@x < 0 and @�
@y > 0, which means that player

1 is interested in choosing x as low as possible, and would like player 2 to choose y as high as

possible. Moreover, given the value of y, the incentive of player 1 to reduce x depends on the value

of b � a + 1 : the higher this value is, the less player 1 has to loose by playing cooperatively. The

same is true for player 2, and thus the value b� a+ 1 can be seen as the strength of the incentive

to play cooperatively (or the inverse of the temptation to defect), and will be denoted hereinafter

by c.

5.1 Equilibria and possible payo¤s

In this section we discuss the criteria for an equilibrium in the PD and show what are the possible

payo¤s in equilibria, using a few examples.

The following two observations stem directly from the payo¤ matrix:

1. The mimax action for both players is D. If a player deviates to it, his opponent�s payo¤ is at

most 1.

2. Assuming that S is natural, each player can guarantee a payo¤ of 1 by choosing the constant

strategy that always plays D. Let d be such a strategy.

For any strategy pro�le (s1; s2), let (sd1; s
d
2) be strategies such that s

d
i (s

d
�i) = si(s�i), sdi (�) =

si(�) and otherwise sdi (�) = D. In words, when playing against each other, (sd1; s
d
2) play exactly like

(s1; s2). However, against any other strategy, they play the minmax action D. Clearly, the payo¤s

when (s1; s2) and (sd1; s
d
2) are played are exactly the same.

Proposition 8 If the strategy set is natural and (s1; s2) is an equilibrium, then (sd1; s
d
2) is also an

equilibrium in any strategy set that contains it.

Proof. By (s1; s2) being an equilibrium, b�1(d; s2) � b�1(s1; s2) and b�2(s1; d) � b�2(s1; s2). By the
de�nition of (sd1; s

d
2), b�1(d; sd2) � b�1(d; s2) and b�2(sd1; d) � b�2(s1; d). Thus, b�1(d; sd2) � b�1(s1; s2)

and b�2(sd1; d) � b�2(s1; s2). But b�1(s1; s2) = b�1(sd1; sd2) and b�2(s1; s2) = b�2(sd1; sd2), which means
that when (sd1; s

d
2) is played, neither player has an incentive to deviate to d. What remains to be

shown is that deviating to d is the most pro�table deviation. This completes the proof, since if the

players do not have an incentive to deviate to the most pro�table deviation, they do not have an

incentive to deviate at all, which means (sd1; s
d
2) is in fact an equilibrium.

With out loss of generality, assume that player 2 plays the strategy sd2 and that player 1 deviates

to some strategy. If player 2 receives a signal, the deviation is detected, which results in player 2

playing D, regardless of the chosen deviation. If player 2 does not receive a signal, the deviation is

not detected, and player 2�s action is not at all a¤ected by the deviation. Since in both cases, all

deviations result in the same action played by player 2, playing the strictly dominant action D is

optimal.
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If we are interested only in what payo¤s can be sustained in equilibrium, this proof allows us

to restrict our attention only the strategies of the type (sd1; s
d
2). Each strategy, s

d
1 and s

d
2 has to

specify the action to be played against each other, and also what action to play when not receiving

a signal. Since there are only two pure actions in this game, each action is a probability distribution

over (C;D) and it can be described as a number in the interval [0; 1_]. In total there are four such

probabilities. Thus, the space of all strategies (sd1; s
d
2) is equivalent to [0; 1]

4.

In what follows we used a computer simulation in order to check which strategies (sd1; s
d
2), that

is what vectors in [0; 1]4, are an equilibrium, and draw the set of all payo¤s that can be achieved

in these equilibria. Since d is the most pro�table deviation, checking that the players loose by

deviating to it is a su¢ cient condition for the optimality of playing sd1 against s
d
2. and vice versa.

Clearly this condition is also necessary if the strategy set is natural, which we assume. We do not

construct a full strategy space that contains (sd1; s
d
2). This is not necessary in order to prove that

(sd1; s
d
2) is an equilibrium because of the way the strategies are de�ned (they play D against any

other strategy):

Assume, for example, that a = 4 and b = 3. The set of feasible payo¤s is:

Note that in this case the standard de�nition and ours coincide. The set of payo¤s which are also

individually rational is:

When p = 1 this is also the set of payo¤s that can be obtained in a Nash equilibrium. As a matter

of fact, this remain to be the equilibria payo¤ set for any p � 1
3 and for any �. For p <

1
3 , however,

the set is smaller. For instance, when p = 1
10 it becomes :
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regardless of the value of �.

The set of feasible and individually rational payo¤s looks similar to the one in the above example

as long as a < b
2 . Therefore, by the folk theorem, when p = 1 the set of equilibria payo¤s also looks

qualitatively the same. However, when p and � change, the set of equilibria can look quite di¤erent,

depending on the exact values of a and b. Take for example a = 4 and b = 3:9. When p = 1
10 and

� = 0. the set is:

When a > b
2 the set of feasible payo¤s is di¤erent from the one before. The following example,

when a = 10 and b = 3, is typical:

Here, under the standard de�nition, the feasible payo¤s set is larger.

If we add the individual rationality restriction, it becomes the set of equilibria payo¤s when

p = 1:
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When p is smaller, the set of equilibria payo¤s may also be smaller. For instance, for p = 0:2 and

� = 0, the set is:

5.2 The Strategy Nice_q

We de�ne the pure strategy nice_q in the following way: if the opponent�s strategy is detected,

nice_q plays C against the strategy nice_q, and D against any other strategy. In case it receives

no signal, it plays C with probability q and D otherwise.

This is a slightly more complicated version of the reciprocal strategy s mentioned in the intro-

duction. nice_q is "nice" as long as it detects that the opponent is nice as well. If, however, it

detects that the other player is not "nice", then it punishes him by defecting. In the event that it

doesn�t receive a signal at all, it tosses a coin and cooperates with probability q.

It should be noted that although we interpret this strategy as "nice", it is only nice if the

opponent plays exactly the same strategy. Therefore, if for example player 1 plays nice_1
2 and

player 2 plays nice_1
3 the result would be that nobody will cooperate if they detect each other,

even though they are both "nice". Clearly, it is possible to solve this problem by de�ning two other

strategies such that when detecting each other they cooperate, and when they receive no signal,

one cooperates with probability 1
2 and the other with probability of

1
3 .

This disadvantage, the fact that nice_q reacts nicely only to one speci�c strategy, is also an

advantage: once a pair of such strategies belongs to a strategy set S, more strategies can be added

without the need of re-de�ning the strategy nice_q.

Going back to the symmetric case, assume that the two players choose the strategy nice_q.

Consider the event "both players play C". This event is the union of the following three events:

1. Both players receive a signal about the opponent�s strategy.
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2. One player receives a signal and the other does not, but chooses to play C anyway.

3. Both players don�t receives a signal but choose to play C nonetheless.

The corresponding probabilities for these events are:

1. p2 + �p (1� p)

2. 2 � q � [p(1� p)� �p (1� p)] (Either player may be the one receiving the signal, hence the 2.)

3. q2 �
�
(1� p)2 + �p (1� p)

�
Since they are disjoint, the event "both players play C" occurs with probability equal to the

some of these three probabilities. That is,

[p+ q(1� p)]2 + �p(1� p)(1� q)2:

Similarly, the probabilities for the other two possible action pro�les (which can be calculated in

a similar way) are:

p(1� p)(1� q) + (1� p)q(1� p)(1� q)� �p(1� p)(1� q)2

for one player playing C and the other D, and

[(1� p)(1� q)]2 + �p(1� p)(1� q)2

for both players playing D.

In addition to that, note that the marginal probability for each player to cooperate is p+q(1�p)
and to defect is (1� p)(1� q).

By multiplying the payo¤s of the game by these probabilities we obtain the expected payo¤ for

each of the two players:

b�i(nice_q; nice_q) = b �
�
[p+ q(1� p)]2 + �p(1� p)(1� q)2

�
+0 � [p(1� p)(1� q) + (1� p)q(1� p)(1� q)� �p(1� p)(1� q)2] +

+a � [p(1� p)(1� q) + (1� p)q(1� p)(1� q)� �p(1� p)(1� q)2] +

+1 �
�
[(1� p)(1� q)]2 + �p(1� p)(1� q)2

�
.

By rearranging and replacing b� a+ 1 by c we obtain;

b�i(nice_q; nice_q) = c � [p+ q(1� p)]2 + (a� 2) [p+ q(1� p)] + 1 +

+c � �p(1� p)(1� q)2.

Note that when holding the other parameters �xed, the higher the value of the incentive to cooperate,

c, the higher the payo¤ for both players.
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If, for example, a is chosen to be 4 and b to be 3, then this expression is reduced to the simple

expression: b�i(nice_q; nice_q) = 2[p+ q(1� p)] + 1.
5.3 Conditions for (nice_q; nice_q) to be a Nash Equilibrium

In this section we �nd for which values of q the strategy pro�le (nice_q; nice_q) is a Nash equilib-

rium. These calculation will become useful in the following section. For convenience, we analyze

the conditions for (nice_q; nice_q) to be a Nash Equilibrium from player 1�s perspective. Since

(nice_q; nice_q) is a special case of (sd1; s
d
2), deviating to d is the most pro�table deviation. In

what follows we assume that d 2 S1 (Note that many other strategies that obtain the same payo¤

as d may exist . For example, a strategy that plays D if it detects nice_q, C if it detects any other

strategy, and D if it receives no signal. However, this, and other strategies of this type, are less

plausible, tend to be more complicated and are not necessarily part of the strategy set S1, whereas

it is natural to assume that S1 contains the constant strategy that plays always D, if not all constant

strategies.)

Since d is the most pro�table deviation, by checking that players loose by deviating to it, we

can obtain a su¢ cient condition for the optimality of playing nice_q against nice_q. Clearly this

condition is also necessary.

In the example mentioned before (a = 4, b = 3), the payo¤ for the deviating player, if he deviates

to playing d, is 4 in case he is not detected and the other player plays C, (probability of (1� p)q)

and 1 otherwise:

b�i(d; nice_q) = 4(1� p)q + 1[p+ (1� p)(1� q)] = 3(1� p)q + 1.
Thus, (nice_q; nice_q) is an equilibrium i¤

2[p+ q(1� p)] + 1 � 3(1� p)q + 1.

That is, a su¢ cient condition for (nice_q; nice_q) to be an equilibrium is 2p
1�p � q. Since q � 1,

for any p greater then 1=3, playing (nice_q; nice_q) is an equilibrium regardless of q (including the

case p = 1).

In the general case, the payo¤ for the deviating player, if he deviates to playing d, is:

b�i(d; nice_q) = a(1� p)q + 1[p+ (1� p)(1� q)].

Thus, (nice_q; nice_q) is an equilibrium i¤

c[p+ q(1� p)]2 + (a� 2) [p+ q(1� p)] + 1 + c�p(1� p)(1� q)2 � a(1� p)q + [p+ (1� p)(1� q)]

or:

c[p+ q(1� p)]2 + (a� 2) p� q(1� p) + c�p(1� p)(1� q)2 � 0.
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Clearly, if for a certain set of parameters (nice_q; nice_q) is an equilibrium, increasing the in-

centive to play cooperatively, c, does not reverse the inequality, and (nice_q; nice_q) remains an

equilibrium.

Since a; c; p and � are the parameters of the game, it is convenient to analyze this inequality as

a polynomial of q:�
(p� 1)2 + �p(1� p)

�
cq2 + (1� p) (2cp (1� �)� 1) q + p (c (p+ �(1� p)) + (a� 2)) � 0.

In order to solve this inequality, we consider the following three cases:

1. c = 0:
The following linear inequality is obtained:

p (a� 2)� (1� p) q � 0.

Hence, the condition for (nice_q; nice_q) to be an equilibrium is q � p(a�2)
1�p . Since q � 1; this

condition is satis�ed for every q if p � 1
a�1 .

In order to simplify the computations, in what follows we assume � = 0, which implies the following

condition for equilibrium:

(p� 1)2 cq2 + (1� p) (2cp� 1) q + p (cp+ (a� 2)) � 0.

When c 6= 0 the quadratic equation (p� 1)2 cq2+(1� p) (2cp� 1) q+p (cp+ (a� 2)) = 0 may have
two, one or no roots, depending on the discriminant:

[(1� p) (2cp� 1)]2 � 4 (p� 1)2 c � p (cp+ (a� 2)) .

2. c < 0:
Since by assumption a > 1 and p is not negative, we obtain that p > 1

4c(a�1) . Therefore, the

discriminant is positive and the equation:

(p� 1)2 cq2 + (1� p) (2cp� 1) q + p (cp+ (a� 2)) = 0

has 2 real valued roots for any feasible parameters (a; c; p). Denote the smaller root by r1 and the

larger by r2. Explicitly:

r1(a; c; p) =
1� 2cp+

p
4cp� 4acp+ 1

2c� 2cp ; r2(a; c; p) =
1� 2cp�

p
4cp� 4acp+ 1

2c� 2cp :

The condition for equilibrium holds for any r1 � q � r2. Since q denotes a probability, the

relevant range for q is [0; 1]. It is possible to show that:

� r1 < 0.
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� r2 > 0.

� r2 � 1 i¤ p � 1�c
a�1 .

We can now check when (nice_q; nice_q) is an equilibrium, depending on the possible locations

of r1 and r2:

1. r1 < 0 and 0 < r2 < 1:

(nice_q; nice_q) is an equilibrium only for q smaller or equal to r2.

For example, if a = 5; c = �2 and p = 0:4, then (nice_q; nice_q) is an equilibrium only for

q � 0:464.

2. r1 < 0 and 1 � r2:

(nice_q; nice_q) is an equilibrium for any q.

For example, if a = 9; c = �2 and p = 0:4.
3. c > 0:

If p � 1
4c(a�1) the discriminant is non-positive and the equation:

(p� 1)2 cq2 + (1� p) (2cp� 1) q + p (cp+ (a� 2)) = 0

has one or no solutions. Therefore, the condition for equilibrium always holds, which implies that

(nice_q; nice_q) is an equilibrium for any q.

However, if p < 1
4c(a�1) , the equation has two real valued roots. As before, denote:

r1(a; c; p) =
1� 2cp+

p
4cp� 4acp+ 1

2c� 2cp ; r2(a; c; p) =
1� 2cp�

p
4cp� 4acp+ 1

2c� 2cp :

It should be noted that since the denominator is now positive, r1 becomes the larger root.

In this case, the inequality hold for q � r2 or q � r1. Once again, since q denotes a probability,

the relevant range for q is [0; 1]. It is possible to show that:

� r1 � 0 i¤ p � maxf 12c ;
2�a
c g.

� r1 � 1 i¤, c � 0:5 or p � 1�c
a�1 .

� r2 � 0 i¤ p � 1
2c or p �

2�a
c .

� r2 � 1 i¤ c � 0:5 and p � 1�c
a�1 .

We can now check when (nice_q; nice_q) is an equilibrium, depending on the possible locations

of r1 and r2:
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1. 1 < r1 and 1 � r2:

(nice_q; nice_q) is an equilibrium for any q.

For example, a = 2; c = 0:4 and p = 0:61.

2. 1 < r1 and 0 � r2 < 1:

(nice_q; nice_q) is an equilibrium only for q smaller or equal to r2.

For example, if a = 4; c = 0:4 and p = 0:1, then (nice_q; nice_q) is an equilibrium only for

q � 0:28.

3. 1 < r1 and r2 < 0:

(nice_q; nice_q) is not an equilibrium for any q.

For example, a = 1:7; c = 0:4 and p = 0:4.

4. 0 < r1 � 1 and 0 � r2 < 1:

(nice_q; nice_q) is an equilibrium only for q smaller or equal to r2 or larger or equal to r1.

For example, if a = 4; c = 0:75 and p = 0:1, then (nice_q; nice_q) is an equilibrium only for

0:4 � q � 0:86.

5. 0 � r1 � 1 and r2 < 0:

(nice_q; nice_q) is an equilibrium only for q larger or equal to r1.

For example, if a = 1:5; c = 0:9 and p = 0:33, then (nice_q; nice_q) is an equilibrium only

for q � 0:86.

6. r1 < 0 and r2 < 0:

(nice_q; nice_q) is an equilibrium for any q.

For example, a = 1:4; c = 0:9 and p = 0:67.

As can be seen in the examples above, each of these six cases is obtained by some vector of

parameters.

5.4 Achieving maximal cooperation

This section discusses the probability of the event that both players cooperate, i.e. the event that

both players play the action C, in a Real Talk Nash equilibrium. We refer to this probability as the

probability for cooperation.

Given a PD game G (i.e. the values of a and b) and the values of p and �, denote the maximal

probability for cooperation in a symmetric Real Talk Nash equilibrium by Pmax. That is, in any

Real Talk game bG that is induced by G there is no strategy set S and a strategy (s; s) 2 S that

yields a probability for cooperation that is higher than Pmax.
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Denote the maximal probability that each player plays C (separately) in a symmetric real talk

Nash equilibrium of the Prisoner�s Dilemma by P �. If � = 0 (that is, when there is no correlation

between the signals the players receive), then Pmax = P �2.

In what follows we �nd the value of Pmax as a function of the parameters of the game, a, b and

p assuming that � = 0. Furthermore, given the parameters of the game we also provide a strategy

that achieves that probability in any strategy set it belongs to. The �rst step would be to show that

under very minor assumptions we can restrict our attention to strategy sets containing strategies

of the form nice_q.

Proposition 9 Let G be a PD game and let bG = (G;S; p; 0) be a Real Talk game induced by G.

Assume that S contains the strategy d for each player and a strategy s such that (s; s) is a Nash

equilibrium. If P is the probability for cooperation when (s; s) is played, then there exist q 2 [0; 1]
such that for any strategy set S

0
containing nice_q for both players, (nice_q; nice_q) is a Nash

equilibrium in bG0
= (G;S

0
; p; 0) and the probability for cooperation is at least P .

In words, this proposition says that, keeping all the parameters of the games G and bG �xed, any
level of cooperation that can be achieved with some strategy s can also be achieved with strategies

of the form nice_q. Naturally, since the original strategy set S might not contain (nice_q; nice_q),

we can only prove that (nice_q; nice_q) has this property in any strategy set S
0
that contains it.

Proof. Let s 2 S. The strategy s has to specify what action to play when it receives the signal s;
and also what action to play if it receives no signal. Since an action is a probability distribution

over C and D; it is enough to characterize an action by the probability of playing C. Denote

the probabilities for playing C given s and � by q1 and q2 (q1 = s(s) and q2 = s(�)). The

marginal probability that a player cooperates is thus pq1+(1� p)q2. Denote this probability by Ps.
Since the signals that the players receive are independent, each player plays C with probability Ps
independently. The probability for cooperation is therefore P = P 2s . The payo¤ for each player is:

�s = P 2s (b� a+ 1) + Ps(a� 2) + 1.

Clearly, s also speci�es some action to play against _d. Denote by q3 = s(d) the probability that

s plays C facing the signal d. The probability that s plays C against d is pq3 + (1 � p)q2. Denote

this probability by Pd. The payo¤ for a player who plays d against s is

�d = Pd � a+ (1� Pd) = Pd(a� 1) + 1:

If (s; s) is a Nash equilibrium, then �s is greater then any other payo¤ that a player can receive by

deviating, including �d. Thus, �s � �d and moreover, since �d � 1 also �s � 1.
We consider two cases:

1. p � Ps.
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Consider the strategy nice_0. This strategy plays C against itself and D against any other

strategy, including when receiving no signal. Let S
0
be a strategy space containing (nice_0; nice_0).

We need to show that a) (nice_0; nice_0) yields a probability of cooperation of at least P

and b) that it is a Nash equilibrium.

a) If both players play nice_0, the probability for cooperation is p2 and by assumption p2 �
P 2s = P .

b) The payo¤s for (nice_0; nice_0) are:

�nice_0 = p2 � (b� a+ 1) + p � (a� 2) + 1.

However, if a player deviates to any other strategy he receives a payo¤ of exactly 1. Hence,

(nice_0; nice_0) can be a Nash equilibrium i¤

p2 � (b� a+ 1) + p � (a� 2) + 1 � 1.

Consider the function f = x2(b�a+1)+x(a�2). We will show that it is positive for x 2 [0; 1].
There are three cases to analyze:

1. (b � a + 1) < 0. It is easy to verify that f = 0 for x1 = 0 and x2 = 2�a
b+1�a . Note that by

the construction of the game b > 1 and thus 2� a < (b� a+1). Therefore also 2� a < 0 and
x2 > 1. Thus the function is not negative for any x 2 [0; 1] � [x1; x2], including x = p.

2. (b � a + 1) > 0. Once again, f = 0 for x1 = 0. The other root can be either negative

or positive, and the function itself is negative only for x between the two roots. If x2 < 0,

then clearly f is positive for any x > 0, including x = p. If x2 > 0 then f is positive only for

x > x2. Since we know that it is positive for x = Ps, and since p � Ps then it is positive also

for x = p.

3. (b� a+1) = 0. Since b > 1 it implies that a > 2. Thus a� 2 > 0 and f is not negative for
x 2 [0;1) including x = p.

Hence, in all cases for any p 2 [0; 1], p2(b � a + 1) + p(a � 2) � 0 and the inequality above

holds. Therefore (nice_0; nice_0) is a Nash equilibrium with a probability for cooperation

p2 � P .

2. p < Ps.

Choose q 2 [0; 1] such that p+ (1� p)q = Ps. Note that by construction q < q2. Let S
0
be a

strategy space containing (nice_q; nice_q). The strategy nice_q plays C when recognizing

itself (an event with probability p) and plays C with probability q when not receiving a signal

at all (an event with probability 1� p). Hence the probability that each player cooperates is

p+ (1� p)q = Ps, and therefore the payo¤ for each player is exactly �s.

Since the most pro�table deviation against nice_q is to play d, if one player deviates, the

expected payo¤ for the deviator, �dev, is not greater than (1 � p)qa + p + (1 � p)(1 � q) =
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(1� p)q (a� 1) + 1. (Note that we are not assuming that d exists in S0). Thus we get:

�dev � (1� p)q (a� 1) + 1 � (1� p)q2 (a� 1) + 1 � Pd(a� 1) + 1 = �d � �s = �nice_q:

This shows that even the most pro�table deviation yields a payo¤ which is not greater than

�s and therefore (nice_q; nice_q) is a Nash equilibrium, with a probability for cooperation

P 2s = P .

Since the maximal probability of cooperation can be achieved by using strategies of the nice_q

type, we will now check what is the exact value of this probability given the di¤erent parameters

of the game. As seen earlier, the probability that both players play C when they both choose the

strategy nice_q is [p+ q(1� p)]2.
Note that

@[p+ q(1� p)]2
@q

= 2[p+ q(1� p)] (1� p) � 0,

and
@[p+ q(1� p)]2

@p
= 2[p+ q(1� p)] (1� q) � 0.

That is, the probability for cooperation increases both in p and in q. Since p is a parameter of the

game, we are interested in �nding the maximal q such that (nice_q; nice_q) is a Nash equilibrium,

given p, i.e., pmax is achieved by maximizing q.

In the example where a = 4 and b = 3, for any p � 1
3 , we can maximize the probability for

cooperation by increasing q as much as possible, which means choosing q = 2p
1�p . Substituting q in

the probability for cooperation equation yields [p+ 2p
1�p(1� p)]

2, or Pmax = (3p)2.

For p > 1=3, the maximization is achieved by choosing q = 1 which induces cooperation with

probability 1.

In sum, Pmax = min
�
(3p)2; 1

�
:

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

p

Pmax

In the general case, the analysis follows the same division to cases as in the previous section:

1. c = 0:
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Similarly to the example before, for p < 1
a�1 maximal cooperation occurs when q =

p(a�2)
1�p .

Substituting q yields [p+ p(a�2)
1�p (1� p)]

2, or Pmax = (p (a� 1))2.
For p � 1

a�1 maximal cooperation occurs when q = 1.

Pmax = min
�
(p (a� 1))2; 1

�
.

In this case, the graph of Pmax as a function of p looks similar the one above.

2. c < 0:

1. r1 < 0 and 0 < r2 < 1:

(nice_q; nice_q) is an equilibrium only for q smaller or equal to r2. Therefore, maximal coopera-

tion can be achieved at q = r2. Substituting q yields [p+r2(1�p)]2, or (p+ 1�2cp�
p
4cp�4acp+1

2c�2cp (1�p))2.
Pmax = (

1�
p
4cp�4acp+1
2c )2.

2. r1 < 0 and 1 � r2:

(nice_q; nice_q) is an equilibrium for every q and maximal cooperation can be achieved by

choosing q = 1.

Pmax = 1.

In sum,

Pmax = min

�
(
1�

p
4cp� 4acp+ 1
2c

)2; 1

�
.

For example, when a = 5 and c = �2 the graph of Pmax as a function of p is:

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

p

Pmax

3. c > 0:
If p � 1

4c(a�1) (nice_q; nice_q) is an equilibrium for all 0 � q � 1, thus maximal cooperation

can be achieved by choosing q = 1.

Pmax = 1.

If p < 1
4c(a�1) maximal cooperation depends on r1 and r2, as de�ned earlier.

1. 1 < r1 and 1 � r2:

(nice_q; nice_q) is an equilibrium for every q and maximal cooperation can be achieved by

choosing q = 1.

Pmax = 1.

31



2. 1 < r1 and 0 � r2 < 1:

(nice_q; nice_q) is an equilibrium only for q smaller or equal to r2. Therefore, maximal

cooperation can be achieved at q = r2. Substituting q yields [p+ r2(1� p)]2, or

(p+ 1�2cp�
p
4cp�4acp+1

2c�2cp (1� p))2.

Pmax = (
1�
p
4cp�4acp+1
2c )2.

3. 1 < r1 and r2 < 0:

(nice_q; nice_q) is not an equilibrium for any q, hence there is no cooperation.

Pmax = 0.

4. 0 < r1 � 1 and 0 � r2 < 1:

(nice_q; nice_q) is an equilibrium only for q smaller or equal to r2 or larger or equal to r1.

Maximal cooperation is reached when q = 1.

Pmax = 1.

5. 0 � r1 � 1 and r2 < 0:

(nice_q; nice_q) is an equilibrium only for q larger or equal to r1. Once again, maximal

cooperation is reached when q = 1.

Pmax = 1.

6. r1 < 0 and r2 < 0:

(nice_q; nice_q) is an equilibrium for every q and maximal cooperation can be achieved by

choosing q = 1.

Pmax = 1.

Combining cases 1 through 6 we can see that cooperation can be achieved with probability 1 if

r1 � 1 or r2 � 1. Since the condition for r1 � 1 is
�
c � 0:5 and p � 1�c

a�1

�
, and the condition for

r2 � 1 is
�
c � 0:5 and p � 1�c

a�1

�
, we simply get the condition p � 1�c

a�1 In short:

Pmax = 1 i¤ p �
1� c
a� 1 .

Otherwise, that is when r1 > 1 and r2 < 1, the probability for cooperation is reduced:

The case r2 � 0 :

Pmax = (
1�

p
4cp� 4acp+ 1
2c

)2 i¤
2� a
c

� p � 1

2c
.

The case r2 < 0 :

Pmax = 0 i¤
�
p >

1

2c
or p <

2� a
c

�
.
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A note is due regarding the last two cases, where p < 1�c
a�1 . On �rst glance it looks as if Pmax is

not monotonic in p, because for small and large ps Pmax is zero, and in between it is positive. This

is not the case, however. For given parameters a; c the following options are possible.

1. a < 1:5, which implies 1
2c <

2�a
c . In this case, for every p (under the assumption p <

1�c
a�1) we

are in the last case, where Pmax = 0.

2. a � 1:5, which implies 1
2c �

2�a
c Note that a � 1:5 also implies that 1�c

a�1 < 1
2c . Thus,

if p < 1�c
a�1 ,then p < 1

2c . This leaves only two options: if
2�a
c < p we get some positive

probability for cooperation, and for p � 2�a
c there is none.

In sum:

Pmax = 1 i¤
�
p � 1

4c(a� 1) or p �
1� c
a� 1

�
,

Pmax = (
1�

p
4cp� 4acp+ 1
2c

)2 i¤
�
p <

1

4c(a� 1) and p <
1� c
a� 1 and

2� a
c

� p � 1

2c

�
and

Pmax = 0 i¤ p <
1

4c(a� 1) and
�
p <

1� c
a� 1 and

�
p >

1

2c
or p <

2� a
c

��
.

Following are three possible graphs for Pmax as a function of p, given the parameters a and b:

For a = 1:7 and c = 0:4:
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For a = 4 and c = 0:75:
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and for a = 4 and c = 0:4:
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As can be seen, Pmax is not necessarily a continuous function of p, but it is (weakly) monotonic

increasing.

6 Conclusion

This paper presented a new way of introducing communication to strategic games. Moreover, an

equilibrium concept was de�ned, and analyzed in speci�c cases. This was done without constructing

strategy sets for the players. In some sense, the lack of explicit sets is one of the week points of this

work. However, this is also its strength: we were able to analyze possible equilibria and possible

payo¤s without the need of constructing speci�c strategy sets. This was done in very general cases,

with little assumptions on the strategy sets.

Communication, as modeled here, replaces other, more complicated, external mechanisms that

allow players to reach similar outcomes. Even though some of the results in this paper were obtained

in those other models as well, here they are obtained in a simpler, more natural, framework.

Two major assumptions were made about the players� signals. The �rst is that the signals

the players receive during the conversation are very simple: receiving a correct signal or not. The

possibility of receiving a wrong signal was not allowed, and the e¤ect such signals might have on

the set of equilibria was not examined.

The second assumption we made, in order to simplify computations, is that the probability that

the players receive a signal is identical for both. However, having a separate probability for each

player is not implausible: some people are better in detecting their opponent�s character, not to

mention that some people are better in hiding their own. Of course, having multiple probabilities

is very likely to change the outcomes of the game.

We analyzed Real Talk only in two player games. Generalizing this to any n player games is

possible. The players�strategies would have to be functions from all the other players�strategies

into actions. In addition to that, probabilities for receiving a signal and correlations would have to

be rede�ned.

The e¤ect of Real Talk on the possible equilibria was presented using a few examples, such

as the battle of the sexes and the prisoner�s dilemma. Achieving cooperation in the prisoner�s

dilemma is considered as one of the hardest tests for a new model or a solution concept. This

is why the prisoner�s dilemma was thoroughly analyzed in this paper, and in a relatively general
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environment. However, there might be other interesting examples of the e¤ect Real Talk has on

equilibria outcomes that are yet to be found.

Analyzing the prisoner�s dilemma, we have shown that a signi�cant level of cooperation can

emerge, and found the maximal probability for cooperation that can be sustained in equilibrium,

when the players�signals are independent. This was done using nice_q strategies. The question

whether the maximal probability of cooperation can be achieved by using nice_q strategies when

there is correlation between the signals the players receive remains open, and requires further

research. Moreover, the exact value of this probability is still unknown, although it is plausible that

it is, at least weakly, higher.

Communication between people is quite complex, certainly more complicated then transferring

a single signal between the players. Despite this fact, this work models at least some aspects of the

interaction between the players, and it can help explain people�s behavior, both in a laboratory and

in real life situations.
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