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Abstract

This paper gives a new "multiproduct" explanation of the wide application of

two-part tari¤s, complementary to the classical "single-product" e¢ ciency-related ex-

planation. We consider a monopolist provider of n (> 1) products who uses two-part

tari¤s consisting of a membership fee common to all consumers and separate prices

for di¤erent product bundles. We show that the change in demand for any bundle

of m 2 [1; n] products caused by imposing an extra membership fee on top of any
separate pricing strategy is proportional to the membership fee to the power of m.

Therefore a small extra membership fee has no �rst-order impact on the demand for

any multi-product bundles (m > 1), which enables the �rm to extract more consumer

surplus. When this positive e¤ect dominates the loss of single-product demand, two-

part tari¤ dominates separate pricing. We present conditions that guarantee such an

outcome, which generalize McAfee, McMillan and Whinston (1989)�s result from two

products to multiple products. Our results suggest that two-part tari¤s can achieve

multidimensional price discrimination and should be subject to the same antitrust

scrutiny as bundling strategies.

Key Words: two-part tari¤, multiproduct pricing, price discrimination, bundling

JEL Codes: D42, L11, L12.

1 Introduction

In this paper, we uncover the mechanism through which a multiproduct monopolist can use

two-part tari¤s to achieve multidimensional price discrimination, and thereby provide a

new explanation for the prevalence of two-part tari¤s in real life. One classical explanation

of single-product two-part tari¤s is that it may minimize deadweight loss and hence achieve
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e¢ ciency (e.g. a �rm may want to set the unit price of its product equal to marginal cost

and capture all social surplus by an entry fee).

Now consider a monopolist provider of three products: 1, 2 and 3. Suppose the �rm

originally only sells them separately at respective prices p1, p2 and p3. Then a buyer of

products 2 and 3, say, needs to pay p2+p3. Suppose, in addition to p1, p2 and p3, the �rm

now charges an extra "membership fee" " to everyone who wants to buy any product at

all (e.g. " may be the entry fee to the shopping mall owned by the �rm). Now a consumer

has to pay total q2 = p2 + " for product 2 alone, and q3 = p3 + " for product 3 alone.

But products 2 and 3 together now cost p2 + p3 + " = q2 + q3 � ", which is as if giving
a "discount" of " for purchasing the "bundle" of products 2 and 3. Moreover, buying all

three products together now costs p1+ p2+ p3+ ", which gives an even higher "discount"

of 2" compared to separate purchases (2" = q1 + q2 + q3 � (p1 + p2 + p3 + ")) . This is
a form of multiproduct price discrimination, achieved by the two-part tari¤ consisting of

the membership fee " and the separate product prices p1, p2 and p3.

In this paper we consider a monopolist provider of n (> 1) products and study when

he would �nd it pro�table to uses the kind of two-part tari¤ described in the previous

example. In particular, we study the impact of imposing an extra membership fee on

top of separate-product pricing strategies, which we call the two-part-tari¤ e¤ect. We

show that the change in demand for any bundle of m 2 [1; n] products due to the extra
membership fee is proportional to the membership fee to the power of m. Therefore, a

small extra membership fee has no �rst-order impact on the demand for any multi-product

(m > 1) bundles, and hence the �rm extracts strictly more surplus from consumers of such

bundles by imposing the extra membership fee. When this positive e¤ect dominates the

loss of single-product demand, two-part tari¤ dominates separate pricing. We present

conditions that guarantee such an outcome.

Our results generalize McAfee, McMillan and Whinston (1989)�s result to the multi-

product case. Their paper addresses the case of two products and provide conditions for

mixed bundling to strictly dominate separate pricing. The two-part tari¤ we study can be

seen as a particular way of mixed bundling, where membership fee and its multiples serve

as the "bundle discounts" (as shown in the example of three products previously).

Although both two-part tari¤s and mixed bundling can achieve multiproduct price

discrimination, they work through di¤erent mechanisms. McAfee, McMillan andWhinston

(1989) show that, o¤ering a discount to the bundle of two products (down from the sum

of their separate prices) will achieve the e¤ect of increasing the demand for both products

by just lowering one bundle price, thus increasing total pro�ts. We show that imposing a

small membership fee has zero �rst-order impact on the demand from all multi-product

consumers, thereby enabling more surplus extraction from them.

Our results suggest that (multiproduct) two-part tari¤s should be subject to the same

antitrust scrutiny as other discriminatory pricing strategies, such as bundling.
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This paper �ts in the theoretical literature of multiproduct pricing. A few papers in

this literature have identi�ed important properties of optimal multiproduct pricing strate-

gies. Armstrong (1996) �nds that the optimal non-linear multiproduct pricing strategy

will always exclude the lowest-typed consumers from the market. McAfee and McMillan

(1988) and Manelli and Vincent (2006) identify the conditions that optimal mixed bundling

strategies have to satisfy. A "drawback" of the optimal mechanisms studied in this liter-

ature is that they seldom appear very analogous to the strategies we observe in real life.

For instance, Manelli and Vincent (2006) show that every multiproduct mixed bundling

strategy may be dominated by a mechanism involving random assignments, which we

rarely observe in real-life pricing.

Optimality is not the focus of this paper. Instead, we concentrate on two-part tari¤

as a particular form of pricing strategy. In this sense, this paper is closely related to

Armstrong (1999), which shows asymptotic results that cost-based two-part tari¤s can be

"almost" optimal when the number of products is large. We show complementary results

on the underlying mechanism of two-part tari¤s, which hold for any number of products.

The remainder of this paper is organized as follows: Section 1 describes the model; Sec-

tion 2 shows the e¤ect of two-part tari¤s on demand, i.e. the two-part-tari¤ e¤ect; Section

3 compares pro�ts under two-part tari¤s and separate pricing, and provides conditions for

the former to dominate the latter; Section 4 concludes.

2 Model1

There is only one �rm, which produces n(> 1) di¤erent kinds of products. We use j 2
f1; 2; :::; ng to denote a product. There is no cost of production. The �rm maximizes

total pro�t.

There is a continuum of consumers, each of whom has a valuation for each of these
products (i.e. the utility she derives from the product) and demands 0 or 1 unit of each

product (i.e. 2 or more units of any one product will provide the exact same utility as

1 unit of that product). The total utility a consumer derives from consuming di¤erent

products is simply the sum of her valuations for these products. No consumption results

in zero utility. We denote a consumer�s type by an n-dimensional real-valued parameter
x � (x1; :::; xn), where xj is this consumer�s valuation for product j.

The �rm does not know each consumer�s type. Rather, it has prior (p.d.f.) f(x) of the

distribution of x among consumers. The support of f is denoted by S � �nj=1Sj � Rn,
where Sj is the support in dimension j (i.e. for product j).

Assumption 1 S is weakly convex and has full dimension in Rn.
1Our notation mostly follows that of Manelli and Vincent (2006).
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For expository simplicity, in the following discussion we focus on the case when S =

[0; 1]n � In. All the results can easily be shown to hold for general S that satis�es

Assumption 1.

Assumption 2 f is continuous and f(x) > 0 if and only if x 2 In.

A bundle is a set of di¤erent products. We denote the full bundle of all n products
as N = f1; 2; :::; ng. Any bundle, denoted by J , is therefore a subset of N , i.e. J � N .

The empty bundle is ? � N .
When it does not cause confusion, we also use j to represent the bundle fjg (i.e.

containing only product j). And jc simply means fjgc.
For bundle J , we denote the number of products in it by jJ j.
A general rule we use in the notation below is: superscript represents dimensionality;

subscript represents bundle or product.

De�nition 1 (Price Schedule) A price schedule P speci�es the price for each possible
bundle, P � fpJgJ�N , where pJ 2 R+ for any J � N .

Note that P consists of 2n prices since there are 2n possible bundles (including the full

bundle and the empty bundle).

De�nition 2 (IC) Consider any K di¤erent subsets of N , denoted fJkgk=1;2;:::;K where

Jk � N 8k = 1; 2; :::;K. A price schedule P = fpJgJ�N is incentive compatible (IC) if
the following condition holds for all K = 1; 2; 3; :::; 2n

pSK
k=1 Jk

�
XK

k=1
pJk

Intuition: In an IC price schedule, the price of a bundle would not exceed the sum

of the prices of any "pro�le" of its sub-bundles that forms a full "cover" of this bundle,

otherwise no consumer would ever demand this bundle. IC is a necessary condition for

each bundle to attract some demand.

Since a partition of a bundle is such a pro�le of sub-bundles, IC therefore implies that

the price of a bundle in an IC price schedule would not exceed the sum of the sub-bundle

prices in any partition of this bundle.

Our discussion from now on focuses only on IC price schedules.

De�nition 3 (Additivity/Separate Pricing) A price schedule P = fpJgJ�N is ad-
ditive (or separate pricing) if p? = 0 and pJ =

P
j2J

pj for any non-empty J � N .

p? = 0 is actually a constraint on all price schedules that satisfy consumers�individual

rationality. Note that this de�nition implies the following result.
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Lemma 4 If P = fpJgJ�N is additive, for any two bundles J and K, it must be pJ+pK =
pJ[K + pJ\K .

Lemma 5 Additivity implies IC.

De�nition 6 (Demand Segment) Given IC price schedule P = fpJgJ�N , the demand
segment for any bundle J � N , denoted AJ , is the set of all the consumers that buy bundle
J :

AJ � fx 2 Inj
X
j2J

xj � pJ �
X
k2K

xk � pK ;8K � Ng

De�nition 7 (Allocation) A (consumer) allocation given price schedule P is the pro-

�le of demand segments of all bundles induced by P, denoted fAJgJ�N .2

Lemma 8 (Additive Allocation) If P = fpJgJ�N is additive, the allocation it induces
fAJgJ�N must satisfy for any J � N

AJ = fx 2 Injxj � pj ;8j 2 J ;xk < pk;8k 2 Jcg (1)

Intuition: An additive price schedule allocates all consumers into "cubes" delineated

by orthogonal hyperplanes.

De�nition 9 (Truncated Type) Given any bundle J � N , a J�truncated type pa-
rameter is denoted xJ = fxjgj2J 2 IJ , where IJ � �j2JIj.

We sometimes use xJj (where j 2 J) to denote the element of xJ pertaining to product
j.

Notice xJ is a jJ j-dimensional vector (or a point) in IJ . We use J instead of jJ j as the
superscript of xJ to emphasize that xJ keeps the dimensions in In according to bundle

J , rather than any jJ j dimensions of In. This distinction is important for the following
de�nitions.

De�nition 10 (Projection) For any (consumer set) A � In and any bundle K 6= ?,
de�ne

AK � fxK 2 IK j(xK ;y) 2 A, for some y 2 IKcg

which is the projection of set A on the jKj-dimensional hyperplane de�ned by the fol-
lowing jKcj equations:

fxKc

j = 0gj2Kc (2)

Note that when K = N , because jN cj = 0, the projection operation above is the

identity mapping, i.e. AN = A.
2To lighten notation, we do not carry P in AJ or fAJgJ�N , but it is always implied that a demand

segment or allocation is induced by some price schedule.
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De�nition 11 (Projection of AJ) For any two bundles K;J 6= ?, the set

AKJ � fxK 2 IK j(xK ;y) 2 AJ , for some y 2 IK
cg

is the projection of set AJ on the jKj-dimensional hyperplane de�ned by the jKcj equa-
tions of (2).

De�nition 12 (Probability Measure) For any A � In, we de�ne the probability mea-
sure of A as M(A) which satis�es

M(A) =

Z
A
f(x)dx

We use MJ(A) =
R
A f(x

J)dxJ to denote the marginal measure in IJ of set A, for
any J � N , which is particularly useful when A does not have full dimension in In but

has full dimension in IJ .

3 Two-Part Tari¤s and the Two-Part-Tari¤ E¤ect

De�nition 13 (Two-Part Tari¤) Given any price schedule P = fpJgJ�N , a two-part
tari¤ is the price schedule Q � (";P) = fqJgJ�N where

qJ =

(
pJ + " ; if J 6= ?
0 ; if J = ?

; and " > 0:

Comment: Compared to P, Q increases the prices of all non-empty bundles by the

same amount ", whilst giving the empty bundle for free. Q therefore imposes an additional

membership fee " on top of the individual prices of products or bundles speci�ed by P

(except for ?).
We have chosen to de�ne two-part tari¤s this way to emphasize the additional mem-

bership fee. It is easy to see that, since P can be any price schedule in De�nition 13,

actually any price schedule Q = fqJgJ�N with qJ > 0 8J 6= ? and q? = 0 is a two-part

tari¤. This is a very broad range of price schedules. What we really need for the purpose

of this paper is only a very small subset of such schedules.

Consider the following two price schedules:

P = fpJgJ�N : additive,
and inducing demand fAJgJ�N ;

Q = fqJgJ�N : where qJ =
�
pJ+";J 6=?
0;J=? ; " > 0;

and inducing demand fCJgJ�N :

(3)

The Q in (3) is a two-part tari¤ de�ned using additive P that induces strictly positive
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single-product demand segments. Since P is additive, Q will not be additive as long as

" > 0.

More importantly, " also acts as a kind of "bundle discount" in this case. To see this,

suppose under Q consumer 1 demands bundle f1g (by paying q1 = p1 + ") consumer 2

demands bundle f2g (by paying q2 = p2 + ") and consumer 3 demands bundle f1; 2g (by
paying qf1;2g = pf1;2g + " = p1 + p2 + " = q1 + q2 � "). Compared to 1 and 2, it is as if 3
gets a "discount" of ", since 3 only needs to pay membership fee " once although she buys

two products. Actually, it is easy to see that a consumer of any bundle J under Q will

get a "discount" of (jJ j � 1) � " compared to the consumers of the jJ j individual products.
This is a special feature of the two-part tari¤ we de�ned in (3).

The in the remaining parts of the paper we focus on the two-part tari¤s de�ned in (3).

Theorem 1 Consider the price schedules and allocations de�ned in (3). If x is uni-
formly distributed, then for any J 6= ?, we have

M(AJnCJ) = c(P) � "jJ j

where c(P) is a function of P (but not of ").

Intuition: Starting from an additive price schedule, imposing an extra membership

fee will lead to a decrease in the demand for any non-empty bundle that is of the same

order as the number of products in the bundle.

Proof.

De�nition 14
AJ(") � fx 2 AJ j0 �

X
j2J

xj � pJ<"g (4)

Since P is additive, by (1) we know:

AJ = fx 2 Injxj � pj ;8j 2 J ;xk < pk;8k 2 Jcg

Therefore

AJ(") = fx 2 AJ j0 �
X
j2J

xj � pJ<"g (5)

= fx 2 Injxj � pj ;8j 2 J ;
X
j2J

xj<
X
j2J

pj + ";xk < pk;8k 2 Jcg

which implies:

Lemma 15 8J � N; we have AJ = CJ [AJ("):

Lemma 16 8J � N; we have M(AJ) =M(CJ) +M(AJ(")):
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Therefore M(AJnCJ) =M(AJ)�M(CJ) =M(AJ("))
Denote AJ

c

J (") � (AJ("))J
c
; AJJ(") � (AJ("))J .

Then by De�nition 11, (1) and (5) we know:

AJJ(") = fxJ 2 IJ j(xJ ;y) 2 AJ("); for some y 2 IJ
cg (6)

= fxJ 2 IJ jxj � pj ;8j 2 J ;
X
j2J

xj<
X
j2J

pj + "g

From this expression we know AJJ(") has full dimension in I
J , and each of its "jJ j

sides" has "length" exactly equal to ".

By (5) we also know

AJ
c

J (") = fxJc 2 IJc j(xJc ;y) 2 AJ("); for some y 2 IJg (7)

= fxJc 2 IJc jxk < pk;8k 2 Jcg

= fxJc 2 IJc j0 � xk < pk;8k 2 Jcg

which implies:

Lemma 17
AJ

c

J (") = A
Jc

J (8)

Lemma 18
AJ(") = A

J
J(")�AJ

c

J (9)

Therefore by mutual independence among all xj�s (j 2 N) (implied by uniform distri-

bution), we have

M(AJnCJ) =M(AJ(")) =MJ(AJJ(")) �MJc(AJ
c

J ) (10)

Note: MJ(�) and MJc(�) are the marginal measures of M in dimensions J and dimen-

sions Jc, respectively.

Now we need to �nd MJ(AJJ(")) and M
Jc(AJ

c

J ).

By (6) and f(x) = 1;8x 2 In, we have

MJ(AJJ(")) =

Z
AJJ (")

dxJ =
"jJ j

jJ j! (11)

By (7) we have

MJc(AJ
c

J (")) =

Z
AJ

c
J (")

dxJ
c
=
Y
k2Jc

pk (12)
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Finally, putting (11) and (12) together, we have

M(AJ(")) =

Q
k2Jc pk
jJ j! � "jJ j (13)

where the �rst part
Q
k2Jc pk
jJ j! � c(P) is a function of P only (more precisely it is a

function of PJ
c
only), and does not depend on ".

Comment: By (7) we know MJc(AJ
c

J (")) only depends on P and distribution f , but

does not depend on ". By (6) we know each of AJJ(")�s "jJ j sides" has "length" ", which
means MJ(AJJ(")) will be proportional to "

jJ j. Therefore M(AJ(")) is also proportional

to "jJ j.

Theorem 2 Consider the price schedules and allocations de�ned in (3). For any general
f satisfying Assumption 2, we have

(i) @M(AJnCJ )
@" j"=0 � 0;8J such that jJ j = 1;

(ii) @M(AJnCJ )
@" j"=0 = 0;8J such that jJ j > 1 (Two-Part-Tari¤ E¤ect).

Intuition: Similar to the results shown in Theorem 1, even when distribution f does

not satisfy independence, when " is very small, we can still think ofM(AJ(")) as "propor-

tional" to "jJ j, and thus its �rst order derivative with respect to " would be "proportional"

to "jJ j�1, which goes to 0 as "! 0 unless jJ j = 1.
Proof. The expressions (5), (6) and (7) derived above hold for any general distribution f
that satis�es Assumption 2. Although property (10) requires mutual independence among

xj�s, we do not really need it here as all we care about is the �rst order derivative of

M(AJ(")), not M(AJ(")) itself.

Part (i): when jJ j = 1, i.e. J = fjg, 8j 2 N .
By (5) we know

Aj(") = fx 2 Injpj � xj<pj + ";xk < pk;8k 2 jcg

= �k2jcfxk 2 Ikj0 � xk < pkg � fxj 2 Ij jpj � xj<pj + "g

where by (8) and (7) we know that Aj
c

j (") = A
jc

j = �k2jcfxk 2 Ikj0 � xk < pkg
Then by (9) we have

M(Aj(")) =

Z pj+"

pj

[

Z
Aj

c

j

f(xj
c
; xj)dx

jc ]dxj

The integral in the brackets is a function of xj only, which we de�ne as

Wj(xj) �
Z
Aj

c

j

f(xj
c
; xj)dx

jc
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And rewrite

M(Aj(")) =

Z pj+"

pj

Wj(xj)dxj

Therefore

@M(Aj("))

@"
j"=0 =Wj(pj + ")j"=0 =Wj(pj) =

Z
Aj

c

j

f(xj
c
; pj)dx

jc � 0

Notice that the last inequality above will be strict if P in (3) satis�es pj > 0 8j 2 N .
Part (ii): when jJ j > 1. Since all n dimensions are "symmetric", without loss of

generality, consider J = f1; 2; :::; jJ jg.
By (8) and (9) we have

M(AJ(")) =

Z
AJ (")

f(x)dx =

Z
AJ

c
J

[

Z
AJJ (")

f(xJ
c
;xJ)dxJ ]dxJ

c

Since AJ
c

J does not depend on " (by (8) and (7)), we have

@M(AJ("))

@"
=

Z
AJ

c
J

[
@

@"

Z
AJJ (")

f(xJ
c
;xJ)dxJ ]dxJ

c
(14)

Now we focus on @
@"

R
AJJ (")

f(xJ
c
;xJ)dxJ .

First notice that by (6) above we know

AJJ(") = fxJ 2 IJ jxj � pj ;8j 2 J ;
X
j2J

xj<
X
j2J

pj + "g

In the following expression we write out
R
AJJ (")

f(xJ
c
;xJ)dxJ in all jJ j dimensions, in

ascending order of product indices from inside outwards.Z
AJJ (")

f(xJ
c
;xJ)dxJ

=

Z "+pjJj

pjJj

Z "+pjJj�1+pjJj�xjJj

pjJj�1

:::

Z "+
P
j�k

pj�
P
j>k

xj

pk

:::

Z "+
P
j�1

pj�
P
j>1

xj

p1

f(x)dx1:::dxk:::dxjJ j�1dxjJ j

Notice because jJ j > 1, this expression will have at least two "layers". We focus on

the �rst (outmost) layer. Denote all the parts inside the �rst layer of integration as

V (jJ j�1;P; "; xjJ j) �
Z "+pjJj�1+pjJj�xjJj

pjJj�1

:::

Z "+
P
j�k

pj�
P
j>k

xj

pk

:::

Z "+
P
j�1

pj�
P
j>1

xj

p1

f(x)dx1:::dxk:::dxjJ j�1

(15)
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Therefore we can rewrite
R
AJJ (")

f(xJ
c
;xJ)dxJ as

Z
AJJ (")

f(xJ
c
;xJ)dxJ =

Z "+pjJj

pjJj

V (jJ j � 1;P; "; xjJ j)dxjJ j

Therefore

@
@"

R
AJJ (")

f(xJ
c
;xJ)dxJ

= V (jJ j � 1;P; "; xjJ j = "+ pjJ j) +
R "+pjJj
pjJj

@
@"V (jJ j � 1;P; "; xjJ j)dxjJ j

(16)

Now examine the �rst part of (16), V (jJ j � 1;P; "; xjJ j = "+ pjJ j), which is found by
letting xjJ j = "+ pjJ j in (15). We only need to focus on the upper bound of integration in

(15), which is "+ pjJ j�1 + pjJ j � xjJ j. We immediately see that it is equal to pjJ j�1 when
xjJ j = "+ pjJ j. But this means the upper and lower bounds of integration of (15) are the

same. Therefore

V (jJ j � 1;P; "; xjJ j = "+ pjJ j) = 0

Now consider the second part of (16), which clearly equals 0 when " = 0.

Therefore we have
@

@"

Z
AJJ (")

f(xJ
c
;xJ)dxJ j"=0 = 0

Substitute back to (14) and we are done.

Comment: Part (i) of Theorem 2 says that, imposing a small extra membership fee

on top of an additive price schedule will cause a �rst-order decrease in the demand for

single-product bundles. Part (ii) says that such a price manipulation has no �rst-order

impact on the demand for all multi-product bundles (consisting of two or more products).

We call part (ii) the two-part-tari¤ e¤ect as it is crucial for the pro�tability of two-part

tari¤s.

When the �rm charges everyone an extra membership fee, part (ii) implies that this will

lead to a pure gain in pro�t from all multi-product consumers, as their demand does not

decrease as a result. This gives rise to the possibility of higher overall pro�t for the �rm.

In the next section we discuss when this gain will dominate the loss from the decreased

demand for single products.

4 Two-Part Tari¤s vs. Separate Pricing

4.1 Separate Pricing

In De�nition 2, we have de�ned additivity to be a synonym of separate pricing to capture

the idea that a separate pricing strategy does not involve "funny" manipulation of the

prices of di¤erent combinations of products.
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Note that, due to additivity, a separate pricing strategy P = fpJgJ�N can also be

written as P = fpjgj2N which only lists the prices of single products, as they uniquely

and completely determine all the other prices in schedule P.

Among all the separate pricing strategies, the following two kinds present interesting

benchmarks.

De�nition 19 (Monopoly Separate Pricing/MSP) A price schedule P = fpJgJ�N
is a monopoly separate pricing strategy if it is additive and 8j 2 N ,

pj = argmax
p0j�0

p0j � Pr[xj � p0j ] (17)

Intuition: A monopoly separate pricing strategy P is an additive price schedule com-
prised of all the "individually optimal" prices that a single-product monopolist would

charge (i.e. the monopolist sets the optimal price for each product irrespective of all the
other products and their prices).

Lemma 20 There exists monopoly separate pricing strategy P = fpJgJ�N such that pj >
0 8j 2 N which yields strictly positive pro�t.

Proof. This result is implied by Assumption 2.

De�nition 21 (Contingent Separate Pricing/CSP) A price schedule P = fpJgJ�N
is a contingent separate pricing strategy if it is additive and 8j 2 N ,

pj = argmax
p0j�0

p0j �M(Aj(p0j ;Pj
c
)) (18)

Intuition: A contingent separate pricing strategy P is also additive, while each of

its component prices pj is optimal for single product j given the prices for all the other
products (Pj

c
). Therefore, each pj is actually a function of Pj

c
, say pj = pj(Pj

c
), and the

whole pro�le P is the "solution" of a system of n such equations. Of course, such equation

systems may not always have a solution, depending on distribution f .

Lemma 22 When all xj�s (j 2 N) are mutually independent, any MSP strategy is also
a CSP strategy, and any strictly none-zero CSP strategy (i.e. all its component prices are

positive except for p?) is also an MSP strategy.

Proof. First consider MSP T = (tJ)J�N . 8j 2 N , denote Fj and fj the marginal

distribution and density of xj , respectively. T must satisfy (17), that is 8j 2 N

tj = argmax
t0j�0

t0j � (1� Fj(t0j))

12



And the �rst order condition is

1� Fj(tj) = tjfj(tj) (19)

Second consider CSP P = (pJ)J�N . Note by additivity P must satisfy (1) of Lemma

8, that is 8j 2 N
Aj = fx 2 Injxj � pj ;xk < pk;8k 2 jcg

And therefore

M(Aj) =

Z 1

pj

[

Z
Aj

c

j

f(xj
c
; xj)dx

jc ]dxj

Since P is CSP, it must satisfy (18), whose �rst order condition for isZ 1

pj

[

Z
Aj

c

j

f(xj
c
; xj)dx

jc ]dxj = pj �
Z
Aj

c

j

f(xj
c
; pj )dx

jc (20)

When all xj�s (j 2 N) are mutually independent, we know f(x) =
Q
j2N fj(xj) and

therefore the condition above reduce toY
k 6=j

Fk(pk) � [1� Fj(pj)� pj � fj(pj)] = 0

which in turn reduce to 1�Fj(pj) = pj � fj(pj) as
Q
k 6=j Fk(pk) > 0 (since pk > 0 8k 6= ?),

which is exactly the same condition as (19).

Lemma 23 When all xj�s (j 2 N) are mutually independent, the optimal separate
pricing strategy is both an MSP and a CSP.

Proof. Suppose P = fpJgJ�N is the optimal separate pricing strategy, then it must be

additive. Thus by (1) of Lemma 8, we have

AJ = fx 2 Injxj � pj ;8j 2 J ;xk < pk;8k 2 Jcg

Since all xj�s (j 2 N) are mutually independent, we have

M(AJ) =
Y
j2J
(1� Fj(pj)) �

Y
k2Jc

Fk(pk) (21)

Now de�ne pro�t function under P:

�(P)�
X
J�N

pJ �M(AJ) (22)

13



By additivity of P, we have

�(P) =
X
J�N

(
X
j2J

pj) �M(AJ)

Substituting (21), we can reduce the pro�t function to

�(P) =
X
j2N

pj � (1� Fj(pj))

Since P is optimal, and P = fpjgj2N , we must have

P = arg max
fp0j�0gj2N

X
j2N

p0j � (1� Fj(p0j))

= fargmax
p0j�0

p0j � (1� Fj(p0j))gj2N

which is exactly (17). Therefore P is MSP.

And by Lemma 22, we know P is also CSP.

Theorem 3 No contingent separate pricing strategy is optimal. Any contingent separate
pricing strategy P is always strictly dominated by the two-part tari¤ Q de�ned in

(3) using P.

Proof. Consider the price schedules and allocations de�ned in (3). Our strategy is to �nd
�rst the di¤erence in pro�ts from P and Q, and then show that when " ! 0, Q yields

strictly higher pro�t than P if P is a contingent separate pricing strategy.

First de�ne pro�t functions:

�(P) �
X
J�N

pJ �M(AJ)

�(Q) �
X
J�N

qJ �M(CJ)

Notice by (3) and (4), we have

�� � �(Q)��(P) =
X
J�N

qJ �M(CJ)�
X
J�N

pJ �M(AJ)

=
X
J 6=?

f(pJ+") � [M(AJ)�M(AJ("))]� pJ �M(AJ)g

= " �
X
J 6=?

M(AJ)�
X
J 6=?

(pJ+") �M(AJ("))

14



Notice by de�nition M(AJ) does not depend on ". Therefore

@��

@"
=

X
J 6=?

M(AJ)�
X
J 6=?

[M(AJ(")) + (pJ+") �
@M(AJ("))

@"
]

=
X
J 6=?

M(AJ)�
X
J 6=?

M(AJ("))�
X
J 6=?

(pJ+") �
@M(AJ("))

@"

Thus
@��

@"
j"=0 =

X
J 6=?

M(AJ)�
X
J 6=?

(pJ) �
@M(AJ("))

@"
j"=0 (23)

Now we study @M(AJ ("))
@" j"=0.

When jJ j > 1, by Theorem 2 we know @M(AJ ("))
@" j"=0 = �@M(AJnCJ )

@" j"=0 = 0:
When jJ j = 1, i.e. J = fjg; j 2 N , we �rst focus on M(Aj(")). By (9) we know

Aj(") = fx 2 Injpj � xj<pj + ";xk < pk;8k 2 jcg

= �k2jcfxk 2 Ikj0 � xk < pkg � fxj 2 Ij jpj � xj<pjg

where by (8) we know that Aj
c

j (") = A
jc

j = �k2jcfxk 2 Ikj0 � xk < pkg
Therefore

M(Aj(")) =

Z pj+"

pj

[

Z
Aj

c

j

f(xj
c
; xj)dx

jc ]dxj

The integral in the brackets only depends on xj , which we de�ne as

Wj(xj) �
Z
Aj

c

j

f(xj
c
; xj)dx

jc

And rewrite

M(Aj(")) =

Z pj+"

pj

Wj(xj)dxj

Therefore
@M(Aj("))

@"
j"=0 =Wj(pj + ")j"=0 =Wj(pj)

Substituting in (23) we get

@��
@" j"=0 =

P
J 6=?

M(AJ)�
nP
j=1

pj �Wj(pj)

=
nP
j=1
[M(Aj)� pj �Wj(pj)] +

P
J�N;jJ j>1

M(AJ)
(24)

Notice that our proof up until this point applies to all general price schedules that

satis�es (3).

Now we use the fact that P is CSP to show that M(Aj) = pj �Wj(pj). To see this,

15



notice that the �rst order condition for (18) is

M(Aj) + pj �
@M(Aj)

@pj
= 0

where M(Aj) =
R 1
pj
[
R
Aj

c

j
f(xj

c
; xj)dx

jc ]dxj =
R 1
pj
Wj(xj)dxj

thus @M(Aj)
@pj

= �Wj(pj) and therefore M(Aj)� pj �Wj(pj) = 0, 8j 2 N:
Therefore we have

@��

@"
j"=0 =

X
J;jJ j>1

M(AJ) > 0

where the last strict inequality is because P is CSP. This implies Q yields strictly higher

pro�t than P.

Theorem 4 When all xj�s ( j 2 N) are mutually independent, any separate pricing
strategy P (including MSP and CSP) is always strictly dominated by the two-part

tari¤ Q de�ned in (3) using P.

Proof. We only need to show that Q strictly dominates the optimal separate pricing

strategy.

Suppose P is the optimal separate pricing strategy, then by Lemma 23 we know P is

CSP, and therefore from Theorem 3 we immediately know P is strictly dominated by Q.

Interpretation: Theorem 4 says that, under independence, imposing an extra mem-

bership fee on top of any separate pricing strategy P will strictly increase pro�t (that is,

raising all the prices in P except for the price of the empty bundle by a same small amount

" > 0).

Theorem 5 With any general f satisfying Assumption 2, any separate pricing strategy
P (including MSP and CSP) is strictly dominated by the two-part tari¤ Q de�ned

in (3) using P if the following condition holds at P

nX
j=1

[M(Aj)� pj �
Z
Aj

c

j

f(xj
c
; pj )dx

jc ] +
X

J�N;jJ j>1
M(AJ) > 0 (25)

where AJ is de�ned in (1).

Proof. Consider the price schedules de�ned in (3). We need to show that when condition
(25) holds, Q yields strictly higher pro�t than P.

In exactly the same way as in the proof of Theorem 3 we can get result (24). Substitute

Wj(pj ) =
R
Aj

c

j
f(xj

c
; pj )dx

jc in (24) and we see that condition (25) is exactly @��
@" j"=0 > 0.

Therefore P is strictly dominated by Q when condition (25) holds.

Intuition:
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As we have discussed in the comment of Theorem 2, imposing a small extra membership

fee on top of a separate pricing strategy will only decrease the demand for single-product

bundles, but has no �rst-order impact on the demand for all multi-product bundles. Since

the �rm charges everyone an extra membership fee, it gains from each and every one

of multi-product consumers. This gain is represented by the term
P

J�N;jJ j>1
M(AJ) in

condition (25) (which is exactly the "number" of all multi-product consumers). From

single-product consumers, the �rm also charges a higher price, but it also loses some

demand. The net e¤ect from single-products is represented by the term
nP
j=1
[M(Aj)� pj �R

Aj
c

j
f(xj

c
; pj )dx

jc ], which may be positive or negative, depending on the distribution of

valuations. The overall impact on pro�t from the whole market is therefore captured by

the left-hand side of condition (25).

Comment:
Theorem 5 generalizes Proposition 1 of McAfee, McMillan and Whinston (1989) to the

multiproduct case. The latter addresses the case of two products and provides a condition

for mixed bundling to strictly dominate separate pricing. It can be shown that when n = 2,

our condition (25) reduces to their condition (1).

As we have discussed in the comment of the two-part tari¤ de�ned in (3), the two-part

tari¤Q can also be seen as a particular way of mixed bundling, where it is as if a consumer

of any bundle J � N gets a "bundle discount" of (jJ j � 1) � ".

5 Conclusion

Two-part tari¤s are prevalent in life. In many cases, they involve more than one product

provided by the same �rm, such as the landline telephone and broadband services one gets

from a telecommunication company, or one�s bank account through which other services

such as credit card, mortgage and travel insurance are also provided.

In this paper we have shown that these two-part tari¤s can be understood as a means

of price discrimination by a multiproduct �rm. This new explanation has nothing to do

with production cost or e¢ ciency, but only requires two or more dimensions of consumer

types (i.e. two or more products).

From this new perspective, we argue that two-part tari¤s should be subject to the

same regulatory scrutiny as other discriminatory pricing strategies.

17



References

[1] Armstrong, M. (1996): �Multiproduct Nonlinear Pricing�, Econometrica, 64(1), pp.

51-75.

[2] Armstrong, M. (1999): "Price Discrimination by a Many-Product Firm", Review of

Economic Studies, 66(1), pp. 151-168.

[3] Gao, M. (2009): "When to Allow Buyers to Sell? Bundling in Mixed Two-Sided

Markets", working paper.

[4] Long, J.B. Jr. (1984): "Comments on Gaussian Demand and Commodity Bundling",

Journal of Business, 57(1), Part 2, pp. S235-S246.

[5] Manelli, A. M. and Vincent, D. (2006): "Bundling as an optimal selling mechanism

for a multiple-good monopolist", Journal of Economic Theory, 127, pp. 1-35.

[6] McAfee, R. P. and McMillan, J. (1988): "Multidimensional Incentive Compatibility

and Mechanism Design", Journal of Economic Theory, 46, pp. 335-354.

[7] McAfee, R. P., McMillan, J. and Whinston, M. D. (1989): "Multiproduct Monopoly,

Commodity Bundling, and Correlation of Values", Quarterly Journal of Economics,

104, pp. 371-383.

18


