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Abstract. The class of weakly acyclic games, which includes potential
games and dominance-solvable games, captures many practical applica-
tion domains. Informally, a weakly acyclic game is one where natural
distributed dynamics, such as better-reply dynamics, cannot enter in-
escapable oscillations. We establish a novel link between such games and
the existence of pure Nash equilibria in subgames. Specifically, we show
that the existence of a unique pure Nash equilibrium in every subgame
implies the weak acyclicity of a game. In contrast, we show that the ex-
istence of (potentially) multiple pure Nash equilibria in every subgame
is insufficient for weak acyclicity.

1 Introduction

In many domains, convergence to a pure Nash equilibrium is a fundamental
problem. In many engineered agent-driven systems that fare best when steady at
pure Nash equilibrium, convergence to one is expected [7,9] to happen via better-
reply (best-reply) dynamics: Start at some strategy profile. Players take turns, in
some arbitrary order, with each player making a better reply (best reply) to the
strategies of the other players, i.e., choosing a strategy that increases (maximizes)
their utility, given the current strategies of the other players. Repeat this process
until no player wants to switch to a different strategy, at which point we reach
a pure Nash.

For better-reply dynamics to converge to a pure Nash equilibrium regard-
less of the initial strategy profile, a necessary condition is that, from every
strategy profile, there exist some better-reply improvement path (that is, a se-
quence of players’ better-replies) leading from that strategy profile to a pure
Nash equilibrium. Games for which this property holds are called “weakly acyclic
games” [10,16]1. Both potential games [12,15] and dominance-solvable games [13]
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are special cases of weakly acyclic games. In games that are not weakly acyclic,
under better/best-reply dynamics, there are starting states from where the game
is guaranteed to oscillate indefinitely. Moreover, the weak acyclicity of a game
implies that natural decentralized dynamics (e.g., randomized better/best-reply,
and no-regret dynamics) are stochastically guaranteed to reach a pure Nash [8,
16]. Thus, weakly acyclic games capture the possibility of reaching pure Nash
equilibria via simple local, globally asynchronous interactions between strategic
agents, independent of the starting state. We assert this is the realistic notion
of “convergence” in most distributed systems.

Weak acyclicity has been specifically addressed in a handful of specially-
structured games: in an applied setting, BGP with backup routing [1], and in a
theoretical setting, games with “strategic complementarities” [3,6] (a supermod-
ularity condition on lattice-structured strategy sets). Marden et al. [9] formulated
the cooperative-control-theoretic consensus problem as a potential game (imply-
ing that it is weakly acyclic); they also defined and investigated a time-varying
version of weak acyclicity.

Weak acyclicity is naturally connected to the study of the computational
properties of sink equilibria [2,4], minimal collections of states from which best-
reply dynamics cannot escape: a game is weakly acyclic if and only if all sinks are
“singletons”, that is, pure Nash equilibria. Unfortunately, Mirrokni and Skopa-
lik [11] have recently examined many typical succinct representations of large
games — weighted/player-specific congestion games, valid-utility games, two-
sided market games, and anonymous games — and found that reliably check-
ing weak acyclicity is extremely computationally intractable in the worst case
(PSPACE-Complete). This means, inter alia, that not only can we not hope to
consistently check games in these categories for weak acyclicity, but we cannot
even hope to have general short “proofs” of weak acyclicity, which, once somehow
found, could be tractably checked2.

With little hope of finding robust, effective ways to consistently check weak
acyclicity, we instead set out to find sufficient conditions for weak acyclicity:
finding useable properties that imply weak acyclicity may yield better insights
into at least some cases where we need weak acyclicity for the application.

In this work, we focus on general normal-form games. Potential games, the
better-studied subset of weakly acyclic games, are known to have the following
property, which we’ll refer to as subgame stability : not only does a pure Nash
equilibrium exist in the game, but a pure Nash equilibrium exists in each of its
subgames, i.e., in each game obtained from the original game by the removal
of players’ strategies. Subgame stability is a useful property in many contexts.
For example, in network routing games, subgame stability corresponds to the
important requirement that there be a stable routing state even in the presence

2 These two statements rely on hypotheses from computational complexity, P 6=
PSPACE and NP 6= PSPACE, both of which have remained open problems for
over 40 years. While not yet formally proven, these hypotheses are almost universally
believed to be true. The former is implied by the similarly near-universally-believed
P 6= NP



of arbitrary network malfunctions [5]. We ask the following natural question: Is
the extremely strong property of subgame stability sufficient for weak acyclicity?
First, we present the following positive result for 2-player games:

Theorem 1. In 2-player games, subgame stability implies weak acyclicity.

What about games with three or more players? We show that the uniqueness
of a pure Nash equilibrium in each subgame implies weak acyclicity.

Theorem 2. If every subgame of a game Γ has a unique pure Nash equilibrium
then Γ is weakly acyclic.

In contrast, the existence of multiple pure Nash equilibria in subgames can
lead to violations of weak acyclicity.

Theorem 3. There are games for which subgame stability holds that are not
weakly-acyclic.

Hence, perhaps counter-intuitively, too many stable states can potentially
result in the instability of local dynamics.

2 Weakly Acyclic Games and Subgame Stability

We use standard game-theoretic notation. Let Γ be a normal-form game with
n players 1, . . . , n. We denote by Si be the strategy space of the ith player. Let
S = S1× . . .×Sn, and let S−i = S1× . . .×Si−1×Si+1× . . .×Sn be the cartesian
product of all strategy spaces but Si. Each player i has a utility function ui that
specifies i’s payoff in every strategy-profile of the players. For each strategy
si ∈ Si, and every (n− 1)-tuple of strategies s−i ∈ S−i, we denote by ui(si, s−i)
the utility of the strategy profile in which player i plays si and all other players
play their strategies in s−i. We will make use of the following definitions.

Definition 1 (better-reply strategies). A strategy s′i ∈ Si is a better-reply
of player i to a strategy profile (si, s−i) if ui(s′i, s−i) > ui(si, s−i).

Definition 2 (best-reply strategies). A strategy si ∈ Si is a best-reply of
player i to a strategy profile s−i ∈ S−i of the other players if

si ∈ argmaxs′i∈Si
ui(s′i, s−i).

Definition 3 (pure Nash equilibria). A strategy profile s is a pure Nash
equilibrium if, for every player i, si is a best reply of i to s−i

Definition 4 (better- and best-reply improvement paths). A better-
reply (best-reply) improvement path in a game Γ is a sequence of strategy pro-
files s1, . . . , sk such that for every j ∈ [k − 1] (1) sj and sj+1 only differ in the
strategy of a single player i and (2) i’s strategy in sj+1 is a better-reply to sj−i
(best-reply to sj−i and ui(s

j+1
i , sj−i) > ui(s

j
i , s

j
−i)). The better-response dynam-

ics (best-response dynamics) graph for Γ is the graph on the strategy profiles in
Γ whose edges are the better-reply (best-reply) improvement paths of length 1.



We will use ∆RΓ (s) and BRΓ (s) to denote the set of all states reachable by,
respectively, better- and best-replies when starting from s in Γ .

We are now ready to define weakly-acyclic games [16]. Informally, a game
is weakly acyclic if a pure Nash equilibrium can be reached from any initial
strategy profile via a better-reply improvement path.

Definition 5 (weakly acyclic games). A game Γ is weakly acyclic if, from
every strategy profile s, there is a better-reply improvement path s1 . . . , sk such
that s1 = s, and sk is a pure Nash equilibrium in Γ . (I.e., for each s, there’s a
pure Nash in ∆RΓ (s).)

We also coin a parallel definition based on best-reply dynamics.

Definition 6 (weakly acyclic under best-reply). A game Γ is weakly acyclic
under best-reply if, from every strategy profile s, there is a best-reply improve-
ment path s1 . . . , sk such that s1 = s and sk is a pure Nash equilibrium in Γ .
(I.e., for each s, there’s a pure Nash in BRΓ (s).)

Weak acyclicity of either kind is equivalent to requiring that, under the re-
spective dynamics, the game has no “non-trivial” sink equilibria [2, 4], i.e., sink
equilibria containing more than one strategy profile. Conventionally, sink equilib-
ria are defined with respect to best-response dynamics, but the original definition
by Goemans et al. [4] takes into account better-response dynamics as well.

The following follows easily from definitions:

Claim. If a game is weakly acyclic under best-reply then it is weakly acyclic.

Proof. If Γ is weakly acyclic under best reply, the paths to equilibrium from each
edge will still be there if we augment the state space with additional better-reply
transitions. On the other hand, the game in Figure 2, mentioned, e.g., in [8], is
weakly acyclic, but not weakly acyclic under best-reply.

H T X

H 2,0 0,2 0,0
T 0,2 2,0 0,0
X 0,0 1,0 3,3

Fig. 1. Matching pennies with a “better-reply” escape route, but a persistent cycle
under best-reply.

Curiously, all of our results apply both to weak acyclicity in its conventional
better-reply sense and to weak acyclicity under best reply. Thus, unlike weak
acyclicity itself, the conditions presented in this paper are “agnostic” to the
better-/best-reply distinction (like the notion of pure Nash equilibria itself).

We now present the notion of subgame stability.



Definition 7 (subgames). A subgame of a game Γ is a game Γ ′ obtained
from Γ via the removal of players’ strategies.

Definition 8 (subgame stability). Subgame stability is said to hold for a
game Γ if every subgame of Γ has a pure Nash equilibrium.

Definition 9 (unique subgame stability). Unique subgame stability is said
to hold for a game Γ if every subgame of Γ has a unique pure Nash equilibrium.

We will also need to refer to games in which no player has two or more
equally good responses to any fixed set of strategies played by the other players.
Following [14], we define strict games as follows.

Definition 10 (strict game). A game Γ is strict if, for any two distinct
strategy profiles s = (s1, . . . , sn) and s′ = (s′1, . . . , s

′
n) such that there is some

j ∈ [n] for which s′ = (s′j , s−j) (i.e., s and s′ differ only in j’s strategy), then
uj(s) 6= uj(s′).

It is easy to connect unique subgame stability and strictness; the following
definition is useful in proving this connection and will play a role in our main
proofs as well.

Definition 11 (subgame spanned by profiles). Given a game Γ with n
players and strategy profiles s1, . . . , sk in Γ , the subgame spanned by s1, . . . , sk

is the subgame Γ ′ of Γ in which the strategy space for player i is S′i = {sji |1 ≤
j ≤ k}.

Claim. Unique subgame stability implies strictness.

Proof. If a game is not strict, there are sj , s′j ∈ Sj and s−j such that uj(sj , s−j) =
uj(s′j , s−j). Both strategy profiles in the subgame spanned by (sj , s−j) and
(s′j , s−j) are pure Nash equilibria, violating unique subgame stability.

3 Sufficient Conditions for Weak Acyclicity

3.1 Subgame Stability Implies Weak Acyclicity in Two-Player
Games

Theorem 1. Every 2-player game Γ = (S1, S2, ui∈{1,2} : Si → R) such that
every subgame Γ ′ = (S′1 ⊆ S1, S

′
2 ⊆ S2, ui) contains a pure Nash equilibrium is

weakly acyclic under best-reply.

Proof. Suppose the best-response dynamics graph has a sink component C con-
taining multiple strategy profiles s1, . . . , sk. Consider the subgame Γ ′ spanned
by these strategy profiles. Let ŝ = (ŝ1, ŝ2) be a pure Nash equilibrium in Γ ′. By
construction, there’s a j such that sj2 = ŝ2. Since sj = (sj1, ŝ2) is in a non-trivial
strongly connected component C, it must have at least one incoming edge and
one outgoing edge connecting it with other nodes in C in the state space. These



two edges must involve different players changing strategies: the same player
can’t play a best response and then immediately have a different best response
to make. Without loss of generality, assume it has an inbound edge by player 1,
from sj−1 = (sj−1

1 , ŝ2), and an outbound edge by player 2, to sj+1 = (sj1, s
j+1
2 )

(otherwise, just set j = j + 1, and you’ll still have sj2 = ŝ2). But ŝ1 has to be
a best response by player 1 to ŝ2 in Γ ′ 3 sj , and since (sj−1

1 , ŝ2) to (sj1, ŝ2) is
a best-response in Γ (and hence in Γ ′), we must have u1(sj) = u1(ŝ). Thus,
even in the full game Γ , where sj−1 → sj is a best-reply transition, sj−1 → ŝ
is also a best-reply transition. But ŝ cannot be in C, since the best-reply links
constituting C must still be present in Γ ′, assuring that no pure Nash of Γ ′ is
in C, which contradicts C being a sink of Γ , with no outbound best-response
edges.

3.2 Unique Subgame Stability Implies Weak Acyclicity in All
Games

Of course, Theorem 1 says nothing about n-player games for n ≥ 3; can we
guarantee weak acyclicity in these games? It turns out that we can, if every
subgame has a unique pure Nash equilibrium.

Theorem 2. Every game Γ that has a unique pure Nash equilibrium in every
subgame Γ ′ ⊆ Γ is weakly acyclic under best-reply (as are all of its subgames).

We’ll need the following technical lemma:

Lemma 1. If s is a strategy profile in Γ , and Γ ′ is the subgame of Γ spanned
by BRΓ (s), then any best-response path s, s1, . . . , sk in Γ ′ that starts at s is also
a best-response path in Γ .

Proof. Induction on the length of the path. The base case is tautological. Induc-
tively, assume s, . . . , si is a best-reply path in Γ . The strategy si+1 is a best-reply
to si in Γ ′ by some player j. This guarantees that si is not a best reply by j to si−j
in Γ ′, let alone in Γ , so Γ ′ ⊇ BRΓ (s) ⊇ BRΓ (si) must contain a best-response
ŝij to si−j in Γ , and since si+1

j is a best-response in Γ ′, we are guaranteed that
uj(ŝij , s

i
−j) = uj(si+1), so si+1 must be a best-response in Γ .

Proof. To prove Theorem 2, assume that Γ is a game satisfying the hypotheses
of the theorem, and for a subgame ∆ ⊆ Γ , denote by s∆ the unique pure Nash
equilibrium in ∆. We will proceed by induction up the semilattice of subgames
of Γ . The base cases are trivial: any 1 × · · · × 1 subgame is weakly acyclic for
lack of any transitions. Suppose that for some subgame Γ ′ of game Γ we know
that every strict subgame Γ ′′ ( Γ ′ is weakly acyclic.

Suppose that Γ ′ is not weakly acyclic: it has a state s from which its unique
pure Nash sΓ ′ cannot be reached by best-replies. Let Γ ′′ be the game spanned
by BR(s). Consider separately the cases of (i) sΓ ′ ∈ Γ ′′ and (ii) sΓ ′ 6∈ Γ ′′:

Case (i): sΓ ′ ∈ Γ ′′. This requires that, for an arbitrary player j with more
than 1 strategy in Γ ′, there be a best-response path from s to some profile ŝ



where j plays the same strategy as it does in sΓ ′′ . Take one such j, and let Γ j

be the subgame of Γ ′ where j is restricted to playing ŝj only. Since sΓ ′ is in Γ j ,
the inductive hypothesis guarantees a best-response path in Γ j from ŝ to sΓ ′ .
By construction, that path must only involve best-replies by players other than
j, who have the same strategy options in Γ j as they did in Γ ′, so that path is
also a best-reply path in Γ ′, assuring a best-reply path in Γ ′ from s to sΓ ′ via
ŝ.

Case (ii): sΓ ′ 6∈ Γ ′′. Then, Γ ′′’s unique pure equilibrium sΓ ′′ must be distinct
from sΓ ′ . Since sΓ ′ is the only pure equilibrium in Γ ′, sΓ ′′ must have an outgoing
best-reply edge to some profile ŝ in Γ ′. But the inductive hypothesis ensures that
sΓ ′′ ∈ BRΓ ′′(s), and, by the lemma, sΓ ′′ ∈ BRΓ ′(s), which then ensures that
ŝ must also be in BRΓ ′(s), and hence in Γ ′′, so sΓ ′′ was not an equilibrium in
Γ ′′.

4 Multiple Stable States Can Lead to Instability

What happens if we just require subgame stability, as in Theorem 1, and allow
more than 2 players, as in Theorem 2? At first glance, introducing extra equilibria
might seem like it would make it harder to get “stuck” in a non-trivial component
of the state space with no “escape path” to an equilibrium.

This is not the case: allowing extra pure Nash equilibria in subgames actually
enables the existence of non-trivial sinks.

Theorem 3. In an n-player game, the existence of pure Nash equilibria in every
subgame is insufficient to guarantee weak acyclicity. This holds even for 3-player
strict games.

Proof. We will prove that the game Γ shown in Figure 4 is a counter-example
that satisfies the theorem’s conditions.

c0 c1 c2

b0 b1 b2 b0 b1 b2 b0 b1 b2

a0 0, 0, 0 4, 4, 3 4, 3, 4 3, 4, 4 0, 1, 1 0, 2, 1 4, 4, 3 4, 3, 4 0, 2, 2

a1 4, 3, 4 1, 1, 0 3, 4, 4 1, 0, 1 5, 5, 5 1, 2, 1 1, 0, 2 1, 1, 2 1, 2, 2

a2 3, 4, 4 2, 1, 0 2, 2, 0 4, 4, 3 2, 1, 1 2, 2, 1 2, 0, 2 2, 1, 2 2, 2, 2

Fig. 2. A 3-player counter-example: pure Nash equilibria exist in every subgame, but
there’s a persistent cycle, even under better-reply dynamics

This is a 3-player, 3 × 3 × 3 game. There is a pure Nash equilibrium in the
full game, s∗ = (a1, b1, c1), with utility 5 for each of the players. There is a cycle
C, every profile in which differs from s∗ in at least 2 players’ strategies. Any
profile (ai, bj , ck) that’s neither s∗ nor in C yields utilities (i, j, k). With utilities



in C always in 3, 4, there is never an incentive for anyone to unilaterally leave
the cycle C, forming a “sheath” of low-utility states separating C from the rest
of the game, particularly s∗. Thus C is a persistent cycle. By construction, the
game is strict and at each state in C there is a unique player who has a better
reply to the current state.

Consider any subgame Γ ′ of this game. If Γ ′ contains s∗, s∗ is a pure Nash
equilibrium of Γ ′ as well.

Suppose Γ ′ is not the full game. In the course of cycling through C, each
strategy of each player is used at least once. Thus, Γ ′ cannot contain all of C.
If it has at least some states of C, pick one state that is in Γ ′, and follow the
edges of C until you get to a state whose sole outbound better-response move
has been “broken” by the better-response strategy being removed in Γ ′. This
process will terminate since C is a simple cycle in Γ that had at least one node
missing in Γ ′. The sole player that had an incentive to move in that state in Γ
now no longer has that option, and if he has any other strategy, the resulting
state cannot be in C, since C never uses more than 2 strategies of any player i in
combination with any fixed s−i. Thus, any other strategy is not an improvement
for that player, either, and this new state is thus a pure Nash equilibrium in Γ ′.

Lastly, if Γ ′ contains neither s∗ nor any nodes of C, taking the highest-index
strategy for each player yields a profile that has to be a pure Nash equilibrium,
since the utilities of non-C, non-s∗ profiles are just (i, j, k).

Thus, every subgame is guaranteed to have a pure Nash equilibrium, and,
due to C, the game is not weakly acyclic.

With 4 or more players, a more mechanistic approach produces counter-
examples even with just 2 strategies per player:

Theorem 4. In an n-player game for an arbitrary n ≥ 4, the existence of pure
Nash equilibria in every subgame is insufficient to guarantee weak acyclicity,
even with only 2 strategies per player.

Proof. For strategy profiles in {0, 1}n, set the utilities as follows, with all indices
being modulo n:

u(s) =


(4, . . . , 4) at s = (1, . . . , 1)
(3, . . . , 3, 2

i’th
, 3, . . . , 3) when si−1 = si = 1, s−(i−1,i) = 0

(3, . . . , 3, 2
i+ 1’th

, 3, . . . , 3) when si = 1, s−i = 0

s else (for the “sheath”).

(1)

Similarly to Theorem 3, this plants a global pure Nash equilibrium at (1, . . . , 1),
and creates a “fragile” better-response cycle. Here, the cycle alternates between
profiles with edit distance n−1 and n−2 from the global pure Nash equilibrium.
At every point of the cycle, the only non-sheath profiles 1 step away are its
predecessor and successor on the cycle, so the cycle is persistent. Since each
profile with edit distance n − 1 from the equilibrium is covered, removing any
player’s 1 strategy breaks the cycle, thus guaranteeing a pure Nash equilibrium
in every subgame by the same reasoning as above.



The 4-player case of Theorem 4 is also sufficient to establish it for any n.
We note that in the 3-player, 2×2×2 case, Theorem 2 still holds, even under

weaker conditions:

Claim. Any strict 2×2×2 game with a pure Nash equilibrium is weakly acyclic.

Proof. The pure Nash equilibrium cannot be part of the non-trivial sink, and
neither can a strategy profile that differs in only one player’s action from it.
That leaves 4 other strategy profiles, with the possible better-response transitions
forming a star in the underlying undirected graph. Since better-response links are
antisymmetric (s→ s′ and s′ → s cannot both be better-response moves), there
can be no cycle among those 4 profiles, and thus no non-trivial sink components.

5 Concluding Remarks

The connection between weak acyclicity and unique subgame stability that we
present is surprising, but not immediately practicable: in most succinct game
representations, there is no reason to believe that checking unique subgame sta-
bility will be tractable. In a complexity-theoretic sense, unique subgame stability
is closer to tractability than weak acyclicity: Any reasonable game representa-
tion will have some “reasonable” representation of subgames, i.e. one in which
checking whether a state is a pure Nash is tractable, which puts unique subgame
stability in a substantially easier complexity class, Π3P than the class PSPACE
for which weak acyclicity is complete in many games.

We leave open the important question of finding efficient algorithms for check-
ing unique subgame stability, which may well be feasible in particular classes of
games. Also open and relevant, of course, is the question of more broadly appli-
cable and tractable conditions for weak acyclicity.
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