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Abstract

A simple two stage bilateral bargaining game is analyzed. The players
simultaneously demand shares of a unit size pie in the first stage. If the
demands add up to more than one, both players, in the second stage,
simultaneously choose whether to stick to their demand or accept the
other’s offer. While both parties sticking to their offers leads to an im-
passe, accepting a lower share than the original demand is costly for each
party. The set of pure strategy subgame perfect equilibria of the game
is characterized for continuous payoff functions strictly increasing in the
pie share and continuous cost functions, strictly increasing in the amount
conceded. Higher cost functions are shown to improve bargaining power.
The limit equilibrium prediction of the model, as the cost functions are
made arbitrarily high, selects a unique equilibrium in the Nash Demand
Game.

1 Introduction

A trade union leader who announces a demand in a negotiation with the man-
agement may risk losing his job if he accepts a lower share than the demand.
The President of a country may face a tougher re-election prospect if she fails to
achieve her publicly announced demand in a domestic or international bargain-
ing situation. More generally, backing down from an initial demand made in
some bargaining scenarios may entail a cost. While seemingly a weakness, these
costs may actually confer greater bargaining power to the party facing these
costs. If this cost makes the party prefer an impasse to concession, following
incompatible offers, the said party can force a concession from her opponent
who does not face such costs. The cost of revoking an earlier demand therefore
gives a bargainer an ability to partially commit herself to a stated demand. I
study a simple model of bilateral bargaining to identify and characterize the
relationship between such revoking costs and bargaining power.
∗I thank Haluk Ergin and John Nachbar for their helpful comments. I am especially
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Two players bargain over a unit sized pie in a two stage game. Each player
announces a demand in the first stage. If the demands add up to less than one,
they split midway between their demands. Otherwise, in the second stage, each
party chooses simultaneously whether to stick to their own demand or accept
the offer of the other player. Both parties sticking to their incompatible offers
results in an impasse. Accepting the other players offer, however, is costly, with
the cost increasing in the amount by which the accepted share is lower than the
demanded share.

The set of pure strategy subgame perfect equilibrium is characterized in
terms of the cost functions. The highest and lowest equilibrium payoffs for a
given player are shown to increase with an increase in the revoking cost func-
tions. The set of equilibria is shown to shrink with higher cost functions. Indeed,
as the cost functions are made arbitrarily high the limit of the equilibrium set
is shown to make a unique equilibrium selection in the limit game which can be
interpreted as the Nash demand game, Nash(1953). The model captures the in-
sight that a bargainer wishes to make it difficult for herself to concede to a lower
offer. Interestingly it shows how making a greater demand for oneself results
in making concession more difficult for the other party, giving the latter higher
commitment ability. The equilibria, as a result, are characterized by a tradeoff
between the twin needs of higher shares and greater commitment ability.

A number of papers have formally analyzed the effect of commitment tactics
on bargaining outcomes following the insights found in Schelling(1956). Craw-
ford(1982) and Ellingsen and Miettinen(2008) analyze a two stage game like
above, with the difference that each bargainer makes the initial demand while
still uncertain about the revoking cost which, unlike the present model, is a con-
stant and independent of the demanded and accepted shares. The bargainers
find out their own revoking cost before taking the second stage actions. These
papers focus on the role that commitment tactics play in generating delay in
bargaining. In the present model, the complete information structure results in
efficiency all too readily.

In terms of objective, this paper follows Muthoo(1996, 1999) and Leventoglu
and Tarar(2005). In Muthoo(1996), the first paper to formally analyze the ef-
fect of revoking costs on bargaining power, following incompatible offers in the
first stage, the bargaining outcome is selected by the Nash Bargaining Solution
(NBS) applied to a modified utility possibility set(UPS). A given share of the pie
is mapped to this UPS with players paying a cost for a share lower than their de-
mand. The analysis is carried out for convex cost functions and concave utility
functions that are strictly increasing and twice continuously differentiable and
common knowledge in the first stage. Leventoglu and Tarar(2005) conduct their
analysis of the game with linear cost and utility functions, by explicitly model-
ing the second stage as a Rubinstein bargaining game (Rubinstein(1982)). Both
papers relate an increase in revoking costs to increased bargaining power, with
unique equilibrium predictions. By retaining the second stage game of Craw-
ford(1982) the present model avoids specifying particular bargaining protocols
while providing a simple framework to analyze the effect of any strictly increas-
ing and differentiable revoking cost function on bargaining power. The present
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model mirrors the comparative static results of Muthoo(1996) and provides fur-
ther support for the equilibrium selection argument in the Nash Demand Game.
While the above two papers capture scenarios where bargainers have the abil-
ity to renegotiate endlessly after their initial demand, the present model studies
the opposite benchmark, where bargainers cannot make offers beyond the initial
demand they partially commit to. Besides providing a transparent and simple
analysis of the tradeoff between higher demands and greater commitment, the
model allows for extensions where both parties sticking to incompatible de-
mands leads to a next round of negotiation where the players get a chance to
change their demand commitments. The simple two stage framework can be
used as the stage game of a repeated game, to capture scenarios like interna-
tional negotiations where each party gets to change their publicly announced
demands after the failure of an earlier round of negotiation, but backing down
from the most recent stated demand in a given round of negotiation incurs a
cost. Given the general class of cost functions which the paper studies one could
model scenarios where these cost functions change over time.

Interestingly, the rationale for extreme divisions being ruled out in this model
and the equilibrium strategies are similar in spirit to findings in Kambe(1999)
and Abreu and Gul(2000), where by making a lower demand a player can force
her opponent to make the initial mass acceptance in the second stage war of
attrition. The commitment possibilities in the latter two papers, however, are
generated by the presence of behavioral types.
The rest of the paper is as follows. Section 2 presents the formal model. Section
3 analyzes the special case of the model where the payoff and cost functions are
linear. The intuition behind the equilibrium strategies in the general model can
be found here. Further, it is easier to foresee the comparative statics and limit
arguments for the general model, by analyzing the linear specification. Section
4 characterizes the equilibrium set for the general model. Section 5 deals with
comparative statics and the limit predictions of the model as the cost functions
are made arbitrarily high. Section 6 concludes.

2 The Bargaining Game

Two players, 1 and 2, play a two stage game. In the first stage, player i chooses
a level of demand zi ∈ [0, 1). If z1 +z2 ≤ 1 the game ends with the division (z1 +
1−z1−z2

2 , z2 + 1−z1−z2
2 ). The corresponding payoffs are π1(z1 + 1−z1−z2

2 ), π2(z2 +
1−z1−z2

2 ), where πi is the payoff function for player i. If z1 + z2 > 1 then the
following second stage simultaneous move game is played.

Accept Stick
Accept π1(x1)− c1(z1 − x1), π2(x2)− c2(z2 − x2) π1(1− z2)− c1(d), π2(z2)
Stick π1(z1), π2(1− z1)− c2(d) π1(0), π2(0)

where xi = zi + 1−zi−zj

2 and d = z1 + z2 − 1.
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The interpretation of this game is as follows. If and when the two players
make incompatible demands (z1 + z2 > 1), player i must choose whether to
stick to her own demand or accept j’s offer, which must be less . However,
there is a cost attached to accepting a division of the pie which is less than the
share demanded in the first stage. This can happen if either player i Accepts
while j Sticks or if both players choose Accept. This feature is captured by
the cost function ci for player i. So if player i had initially demanded zi which
was incompatible with player j’s demand, zj , then accepting j’s offer in the
second stage while j sticks to his offer would give player i a payoff of πi(1 −
zj) − ci(zi − (1 − zj)). If both players choose to Accept in the second stage
following incompatible offers (z1, z2), then player i gets a compromise share
xi = zi + 1−zi−zj

2 with a payoff of πi(xi) and also pays the cost for accepting a
lower share, ci(zi − xi). Note that since the second stage game is played only if
z1+z2 > 1, it must be true that xi < zi. Finally if both players decide to stick to
their incompatible demands they get their disagreement payoff, (π1(0), π2(0)).
The following assumptions are met by the payoff and cost functions in the rest
of the note.

A1. For i ∈ {1, 2}, πi is a strictly increasing and continuously differentiable
function. Further πi(0) = 0 and πi(1) = 1.

A2. For i ∈ {1, 2}, ci is a strictly increasing and continuously differentiable
function with ci(0) = 0.

This completes the description of the two stage bargaining game.

Figure 1: The Linear Model
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3 The Linear Model

In this section the payoff and cost functions are assumed to be linear. In partic-
ular, πi(x) = x and ci(d) = kid where ki > 0. The second stage game, therefore,
is as follows

Accept Stick
Accept x1 − k1(z1 − x1), x2 − k2(z2 − x2) 1− z2 − k1(z1 + z2 − 1), z2
Stick z1, 1− z1 − k2(z1 + z2 − 1) 0, 0

Figure 1 illustrates the intuition behind Proposition 1. BA represents demand
profiles that add up to one. OE and EF represent z2/z1 = (1 + k2)/k1 and
z2/z1 = k2/(1 + k1). BD is the graph of 1 − z2 − k1(z1 + z2 − 1) = 0 while
CA graphs 1 − z1 − k2(z1 + z2 − 1) = 0. For points lying above (below) BD
it must be that 1 − z2 − k1(z1 + z2 − 1) < (>)0. Similarly points lying above
(below) CA satisfy 1− z1− k2(z1 + z2− 1) < (>)0. Lemmas 1 and 2 show that
the first stage demands in a pure strategy SPE must lie on BA. Incompatible
offers (points above BA) can be separated into 4 regions. For points above
CY ∗D, both players prefer Stick to Accept. In the AY ∗D region the unique
NE in the second stage involves 1 playing Accept while 2 Sticks. Incompatible
offers from the CBY ∗ region results in the unique NE (Stick,Accept) in the
second stage. Finally for first stage offers in BY ∗A both (Accept, Stick) and
(Stick,Accept) are Nash Equilibria of the second stage. Lemma 3 essentially
shows that equilibrium demands cannot be in the AN region since player 2 would
then have the incentive to deviate to a point in AY ∗D, forcing a concession
from player 1 and getting a higher payoff. A symmetric argument rules out
the BM region. Notice that making a high demand (greater than Y1) gives
player 2 greater commitment power. Indeed by making a demand which selects
a point in AY ∗D player 2 ends up making Stick her dominant strategy in the
second stage game, while leaving player 1 enough room to prefer conceding to
an impasse. Demand profiles that are not ruled out as above, therefore, lie on
MN . Proposition 1 also specifies subgame perfect strategies to support these
demands.

Let (z1, z2) be the demands made in the first stage of a pure strategy subgame
perfect equilibrium of the linear model.

Lemma 1. z1 + z2 ≮ 1

Proof. This is immediate, since if z1+z2 < 1, player i can deviate by demanding
1− zj . Since (1− zj , zj) is still compatible, player i gets a payoff of 1− zj which
is strictly higher than the original payoff zi, as z1 + z2 < 1.

Lemma 2. z1 + z2 ≯ 1

Proof. Suppose z1 + z2 > 1. Let the payoffs in the second stage game, which
must now be played, be (y1, y2). Due to the nature of the bargaining game the
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outcome must be determined by a pure strategy Nash Equilibrium of the second
stage game. Note that {Accept, Accept} could never be a Nash Equilibrium of
the second stage game.

Suppose the Nash Equilibrium in the second stage game for this SPE involves
the strategies {Stick,Accept}. Then y1 = z1 and y2 = 1− z1 − k2(z1 + z2 − 1).
Consider what happens if player 2 deviates to making the compatible demand
z̃2 = 1− z1, in the first stage. The payoffs from this deviation are (z1, 1− z1).
Given that 1 − z1 > y2, this is a profitable deviation. So if z1 + z2 > 1 and
(z1, z2) are demands made in a subgame perfect equilibrium, the second stage
Nash Equilibrium cannot involve {Stick,Accept}. A symmetric argument rules
out {Accept, Stick}. If the second stage Nash Equilibrium is {Stick, Stick} then
y1 = y2 = 0. Player i could then profitably deviate by demanding z̃i = ε where
0 < ε = 1 − zj , thereby making a compatible offer and receiving a payoff of ε.
So irrespective of the pure strategy Nash Equilibrium in the second stage game,
there is always a profitable deviation for some player if z1 + z2 > 1.

Lemmas 1 and 2 imply that if (z1, z2) are demands made in a pure strategy
SPE of the bargaining game, it must be that z1 + z2 = 1.

Lemma 3. If (z1, z2) is the demand profile in a pure strategy SPE of the bar-
gaining game with z1 + z2 = 1 then @ε > 0 and i ∈ {1, 2}such that

1− zi − kjε < 0 (1)

and
1− zj − ε− kiε > 0 (2)

Proof. Suppose not. Let ε > 0 and let 1− zi − kjε < 0 and 1− zj − ε− kiε > 0
for some i ∈ {1, 2} with (zi, zj) being the demands made in an SPE of the
bargaining game. I will show that player j has a profitable deviation. With the
present demand profile, (zi, zj) the payoffs are also (zi, zj) due to compatibility.
Now suppose player j deviates to making the incompatible offer zj + ε. Due to
incompatible offers the second stage game would have to be played. If player
i chooses Accept then player j is clearly better off choosing Stick. If player
i chooses Stick then j’s payoff from choosing Accept is 1 − zi − kjε which is
strictly less than the 0 he gets if he Sticks, given the assumption above. So
Stick strictly dominates Accept for player j. Given that player j will choose
Stick player i would get 1 − zj − ε − kiε if she chose Accept which is strictly
greater than the 0 she would get if she chooses Stick. Consequently the unique
Strict Nash Equilibrium of the second stage game following the deviation would
involve i playing Accept and j playing Stick, with a payoff of zj + ε for player
j. Hence player j has a profitable deviation.

Proposition 1. k2
1+k1

≤ z∗2
z∗1
≤ 1+k2

k1
and z∗1 +z∗2 = 1 are necessary and sufficient

conditions for (z∗1 , z
∗
2) to be a pure strategy subgame perfect equilibrium outcome

of the bargaining game with linear payoffs and costs.
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Necessity

Proof. Let (z∗1 , z
∗
2) be the demands made in a pure strategy SPE of the bargain-

ing game. From lemmas 1 and 2 it must be that z∗1 + z∗2 = 1. If an ε satisfies
the conditions of lemma 3 for (z∗1 , z

∗
2) it must be that ε > z∗1

k1
(from (1), setting

i = 2) and ε < z∗2
1+k2

(from (2), setting i = 2). So it must be that z∗1
k1
< ε <

z∗2
1+k2

.

Now, given that z∗2
1+k2

is bounded above by 1, such an ε will not exist iff

z∗2
1 + k2

≤ z∗1
k1

(3)

A similar argument using (1) and (2) and setting i = 1 shows that for profitable
deviations of the kind considered in Lemma 3 not to exist, it must also be true
that

z∗1
1 + k1

≤ z∗2
k2

(4)

Combining (3) and (4) gives us the necessary condition for (z∗1 , z
∗
2) to be the

equilibrium demands; namely

k2

1 + k1
≤ z∗2
z∗1
≤ 1 + k2

k1
(5)

Sufficiency

Proof. Let (z∗1 , z
∗
2) satisfy (5) and z∗1 + z∗2 = 1. I will construct strategies that

constitute an SPE of the bargaining game using these demands. In the first stage
player 1 demands z∗1 while player 2 demands z∗2 . If the second stage game is
reached and if player 2 demanded z2 > z∗2 in the first stage, then player 1 chooses
{Stick} while player 2 chooses {Accept} if 1− z∗1 − k2(z2− z∗2) > 0 and {Stick}
otherwise. Similarly, if player 1 demanded z1 > z∗1 in the first stage, then player
2 chooses {Stick} while player 1 chooses {Accept} if 1 − z∗2 − k1(z1 − z∗1) > 0
and {Stick} otherwise.
To see why these strategies constitute an SPE of the bargaining game, note first
that neither player has any incentive to demand a lesser amount. Now consider
player i’s incentives to deviate by demanding zi > z∗1 . If in the second stage
player i is required by the strategies to play {Accept} then it must be that 1−
z∗j −ki(zi−z∗i ) > 0. Given that player j’s strategy requires j to {Stick}, i would
do strictly worse by deviating to {Stick}. Further, given that i chooses {Accept}
player j can do no better than play {Stick} as is required by his strategies. In
other words the off equilibrium strategies induce a strict Nash Equilibrium of
the second stage game when i demands zi > z∗i and 1 − z∗j − ki(zi − z∗i ) > 0.
So by deviating to zi, i gets a payoff of 1− z∗j − ki(zi− z∗i ) which is strictly less
than the payoff of 1−z∗j she was guaranteed under the original strategies. Now,
if the deviation zi is such that 1 − z∗j − ki(zi − z∗i ) < 0 the strategies require i
to {Stick} which is indeed her dominant strategy in this case. By the fact that
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(z∗1 , z
∗
2) satisfies (5) it must be the case that @ε > 0 such that 1− z∗j − kiε < 0

and 1−z∗i −ε−kjε > 0. However the deviation zi is such that setting ε = zi−z∗i
we get 1−z∗j −kiε < 0. So (5) implies that 1−z∗i − ε−kjε ≤ 0. Substituting for
ε we get 1−zi−kj(z∗j −(1−zi)) ≤ 0. The left hand term in this inequality is the
payoff j gets from choosing Accept while choosing Stick gives him 0. Therefore,
j’s optimal action continues to be {Stick} as suggested by the strategies. The
pure Nash Equilibrium in the second stage after such deviations, thus, involve
a payoff of (0, 0), which makes i strictly worse off. As a result i has no incentive
to deviate from the specified strategies. Hence, the strategies specified above
constitute an SPE of the bargaining game.

4 The General Model

In this section the only assumptions imposed on the payoff and cost functions
are A1 and A2.

Figure 2: The General Model

Figure 2 captures the workings of Proposition 2. Note that the coordinates of
a given point in the figure correspond to the shares of the pie demanded by each
party. BA is the same as Fig. 1. BD is the graph for π1(1−z2)−c1(z1+z2−1) =
0, while CA graphs π2(1− z1)− c2(z1 + z2− 1) = 0. The intuition for why first
stage demands must lie on MN is exactly the same as in the linear case, as
can be seen by comparing this with Fig. 1. The only substantial addition for
the general model is to show that the curves, BD and CA, which are generated
by the particular payoff and cost functions, have a unique intersection point.
This is indeed true given A1 and A2 and is established by Lemmas 4 and
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5. Proposition 2, also provides subgame perfect strategies that can support
demand profiles which lie on MN .

The following lemmas help pin down the exact characterization of the equi-
librium demands.

Lemma 4. There exists a unique ȳj ∈ (0, 1) such that πi(1− yj) = ci(yj).

Proof. Let gi(yj) = πi(1− yj)− ci(yj)
Note that gi(0) = 1 and gi(1) = −ci(1) < 0. Further, gi is a strictly decreasing
and continuous function. Consequently by the intermediate value theorem there
exists ȳj such that gi(ȳj) = 0. Further, given that gi is strictly decreasing,
ȳj ∈ (0, 1).

Lemma 5. There exists a unique (y1, y2) with yi ∈ (0, 1) that solves,

π1(1− y2) = c1(y1 + y2 − 1) (6)

and
π2(1− y1) = c2(y1 + y2 − 1) (7)

Proof. Define the function ŷ1(y2) = c−1
1 (π1(1− y2)) + 1− y2 for all y2 ∈ {0, 1}

such that ∃ d > 0 with c1(d) = π1(1− y2).
Note that ŷ1(1) = 0. By lemma 4 there exists ȳ2 ∈ (0, 1) such that ŷ1(ȳ2) = 1.
Further, given A1 and A2, ŷ1 is a well defined, continuously differentiable and
strictly decreasing function on [ȳ2, 1] with

∂ŷ1
∂y2

=
−π′1(1− y2)

c′1(c−1
1 (π1(1− y2)))

− 1 < −1 (8)

Similarly define the function ŷ2(y1) = c−1
2 (π2(1− y1)) + 1− y1 for all y1 ∈ [0, 1]

such that ∃ d > 0 with c2(d) = π2(1−y1). By the same arguments as before, ŷ2
is a continuously differentiable strictly decreasing function on the corresponding
[ȳ1, 1] with

∂ŷ2
∂y1

=
−π′2(1− y1)

c′2(c−1
2 (π2(1− y1)))

− 1 < −1 (9)

Let ỹ2 : [0, 1]→ < be defined by ỹ2(y1) = ŷ−1
1 (y1).

Note that ỹ2(0) = 1 while ỹ2(1) = ȳ2. Also ỹ2 is a continuous and strictly
decreasing function with

−1 <
∂ỹ2
∂y1

=
1

−π′1(1−y2)
c′1(c

−1
1 (π1(1−y2)))

− 1
< 0 (10)

Therefore ỹ2(ȳ1) < 1, since ȳ1 ∈ (0, 1).
Consequently (ŷ2 − ỹ2)(ȳ1) = 1− ỹ2(ȳ1) > 0.
Also, (ŷ2 − ỹ2)(1) = 0− ȳ2 < 0.
Finally, the function (ŷ2 − ỹ2) is a strictly decreasing function of y1 on [ȳ1, 1]
as can be seen by subtracting the fraction in (10) from that in (9), the former
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being strictly greater than −1, the latter strictly less than −1 and both being
negative.
Therefore by the intermediate value theorem and the fact that (ŷ2 − ỹ2) is a
strictly decreasing function of y1 on [ȳ1, 1], there exists a unique y∗1 ∈ (ȳ1, 1)
such that (ŷ2 − ỹ2)(y∗1) = 0. Let y∗2 = ŷ2(y∗1). y∗2 ∈ (0, 1) since y∗1 ∈ (ȳ1, 1).
Further, y∗2 = ỹ2(y∗1) ⇒ y∗1 = ŷ1(y∗2). Therefore, (y∗1 , y

∗
2) solves (6) and (7) and

does so uniquely amongst any (y1, y2) with y1 ∈ [ȳ1, 1]. The proof concludes by
showing that (7) cannot hold for any y1 < ȳ1.
Let y1 < ȳ1. By the definition of ȳ1, it must be that π2(1− y1) > c2(y1).
⇒ π2(1 − y1) > c2(y1 + y2 − 1) for all 1 − y1 ≤ y2 ≤ 1 as c2(·) is a strictly
increasing function.

Let (y∗1 , y
∗
2) be the unique solution to (6) and (7), guaranteed by lemma 5.

Proposition 2. Given A1 and A2 the demand profile in any pure strat-
egy subgame perfect equilibrium of the bargaining game must be an element of
{(z∗1 , z∗2) s.t. z∗1 + z∗2 = 1, z∗1 ≤ y∗1 and z∗2 ≤ y∗2}.

Proof. The argument for z∗1 + z∗2 = 1 is very similar to the linear case and is
therefore skipped. I will first show that (zi, zj) with zi > y∗i and z1 + z2 = 1
cannot be the demand profile of a pure strategy subgame perfect equilibrium.
The payoffs generated by these demands are (πi(zi), πj(zj)). Further, ỹj(zi) is
well defined as zi > y∗i > ȳi and satisfies ỹj(zi) > zj . Now, given that zi > y∗i
it must be that (ŷj − ỹj)(zi) < 0.
⇒ ŷj(zi) < ỹj(zi).
Since πj(1− zi) = cj(zi + ŷj(zi)− 1) by definition, it follows that

πj(1− zi)− cj(zi + ỹj(zi)− ε− 1) < 0 (11)

for a small enough ε > 0.
On the other hand, since πi(1− ỹj(zi))− cj(zi + ỹj(zi)− 1) = 0 it must also be
true that,

πi(1− (ỹj(zi)− ε))− cj(zi + ỹj(zi)− ε− 1) > 0 (12)

for a small enough ε > 0.
Consider the deviation by player j involving a demand of ỹj(zi)− ε in the first
stage. This leads to incompatible demands thereby leading to the second stage.
Now, given (11) it is a dominant strategy for j to play {Stick}. Further (12)
implies that player i would strictly prefer {Accept} to {Stick} conditional on j
playing {Stick}. Consequently the unique Nash Equilibrium in the second stage
would involve i accepting and j sticking to her offer. The payoff to j from this
deviation is πj(ỹj(zi)−ε) which is strictly greater than her original payoff. This
profitable deviation rules out the possibility of the equilibrium demand profile
being (zi, zj) with zi > y∗i and z1 + z2 = 1.
Finally I construct a pure strategy SPE to support an element of the set
{(z∗1 , z∗2) s.t. z∗1 + z∗2 = 1, z∗1 ≤ y∗1 and z∗2 ≤ y∗2} as the first stage demand
profile. Let {(z∗1 , z∗2) be such an element. The strategies are as follows, Player i
demands z∗i in the first stage. If the second stage game is reached and if player
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j demanded zj > z∗j in the first stage, then i chooses {Stick}, while j chooses
{Accept} if πj(1− z∗i )− cj(z∗i + zj − 1) > 0 and chooses {Stick} otherwise.
The above strategies can be verified to be subgame perfect, using arguments
similar to the linear case. This concludes the proof.

It can be easily verified that ( 1+k1
1+k1+k2

, 1+k2
1+k1+k2

) solves (6) and (7) in the
linear model of section 2. Proposition 2 then readily gives us equation (5) for
this special case.

5 Implications

5.1 Comparative Statics

As is obvious from proposition 2 the highest share for player i in equilibrium is
y∗i and the lowest, 1−y∗j . To see what happens to equilibrium shares if player i’s
cost function increases, consider the following setup. I fix player j’s payoff and
cost functions at πj and cj . Player i’s payoff function is given by π∗i , while two
cost functions ci and ĉi are considered with ci(d) < ĉi(d), for all d > 0. Payoff
and cost functions are assumed to satisfy A1 and A2 respectively. Let y∗i and
1 − y∗j be the highest and lowest equilibrium payoffs for i with cost function
ci. Let the corresponding payoffs for the cost function ĉi be y∗∗i and 1 − y∗∗j .
Define ŷi and ȳj for the cost function ci as in section 3. Let ˆ̂yi and ¯̄yj be the
corresponding objects for ĉi. By definition,

πi(1− ȳj) = ci(ȳj) (13)

and
πi(1− ¯̄yj) = ĉi(¯̄yj) (14)

Given A1, A2 and ci(d) < ĉi(d), for all d > 0, it must be true that ¯̄yj < ȳj . It is
also easy to verify that ˆ̂yi(yj) < ŷi(yj) for all yj ∈ [ȳj , 1]. By the definition of y∗j
it must be true that (ŷi− ỹi)(y∗j ) = 0. Therefore (ˆ̂yi− ỹi)(y∗j ) < 0. On the other
hand (ˆ̂yi − ỹi)(¯̄yj) = 1− ỹi(¯̄yj) > 0. Consequently there exists x ∈ (¯̄yj , y∗j ) such
that (ˆ̂yi − ỹi)(x) = 0. In other words y∗∗j = x. Importantly, note that y∗∗j < y∗j .
Further, since y∗∗i = ỹi(y∗∗j ) with ỹi being a strictly decreasing function, it is
true that y∗∗i > y∗i . Therefore increasing the cost function for player i from c∗i
to c∗∗i increases both her lowest payoff from 1 − y∗j to 1 − y∗∗j and her highest
payoff from y∗i to y∗∗i . In this sense, the more costly it is to back down from the
first stage demand, the greater is the player’s bargaining power.

5.2 Equilibrium Selection in the Nash Demand Game

Let c1(d) = kc(d) and c2(d) = c(d), for d ∈ (0, ε) where c(d) satisfies A2 and
k > 0 for some ε > 0. In this case for a high enough value of c′(0), the solution
to (6) and (7), (y∗1 , y

∗
2) will satisfy

π1(1− y∗2)
π2(1− y∗1)

= k (15)
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Note that by choosing a high enough value of c′(0), the value of y∗1 +y∗2−1 can be
made lower than ε. At the limit as c′(0) diverges to infinity, the game makes it
impossible for players to back down from offers made in the first stage, thereby
giving the Nash Demand Game as the limit game. Also at the limit y∗1 converges
to 1−y∗2 . Finally, therefore, the limit of the equilibrium prediction of this model,
which is the unique point (y∗∗1 , y∗∗2 ) with π1(y

∗∗
1 )

π2(y∗∗2 ) = k and y∗∗1 + y∗∗2 = 1 selects
a unique equilibrium in the Nash Demand Game.

6 Conclusion

The tradeoff between higher demands and higher commitment ability has been
studied using a simple and transparent two stage non-cooperative model of bar-
gaining. The ability to commit is generated by making backing down from a
stated demand costly. When these costs are common knowledge and increas-
ing in the extent of concession, higher cost functions yield greater bargaining
power. The objective of this study has been to provide a simple tractable model
to capture this relationship, which can then be applied to model scenarios where
players have the ability to modify their commitments. While backing down in a
negotiation may be costly, the breakdown of a negotiation (i.e. (Stick, Stick))
could lead to a new round of negotiation where the two parties get to choose
new levels of demand to commit to. Given the general class of payoff and cost
functions that the present analysis considers it would indeed be possible to con-
sider the effect of changing cost structures on the bargaining outcome when
parties can change their commitment after a failed round of negotiation. Mak-
ing the revoking cost functions arbitrarily high makes backing down impossible
at the limit, thereby resulting in the Nash Demand Game. The limit equilib-
rium prediction of the model is thereby shown to select a unique equilibrium in
the Nash Demand Game. The equilibrium prediction is driven by the ratio of
commitment costs as opposed to relative impatience.
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