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Abstract

We introduce a characterization of (dominant strategy) implementable allocation
rules based on an integral monotonicity condition. This condition relates valuation
differences with the integral of measurable selections of the subderivative correspon-
dence between two types, defined at equilibrium allocations. We use this character-
ization, which does not rely on convexity or full differentiability assumptions of the
valuation function with respect to types, to provide a generalized Revenue Equiv-
alence result that holds even when the standard version fails. Our new version
of Revenue Equivalence imposes bounds on the difference between indirect utility
functions generated by two payment schemes that implement the same allocation
rule and assign the same equilibrium payoff to the “lowest type”. We provide some
examples to illustrate our results.
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1 Introduction

The Revenue Equivalence Principle states that, under certain conditions, two (dominant
strategy) incentive compatible mechanisms sharing the same allocation rule generate
revenue that differ at most by a constant. The derivation of this remarkable result was
originally accomplished by Myerson (1981) under the assumptions that types lie in one-
dimensional intervals and valuations are linear in types. The technique Myerson used,
∗Preliminary version; comments welcome. The first author is indebted to Claudio Mezzetti and Rabee
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i.e., imposing sufficient conditions on different aspects of the design problem to apply the
envelope theorem, was later adapted to prove more general versions of Revenue Equiv-
alence.1 For instance, Milgrom and Segal (2002) worked with an arbitrary set of social
allocations and obtained the integral representation of the value function of the individ-
ual incentive problem under the hypotheses that valuations are absolutely continuous
and everywhere differentiable with respect to one-dimensional types.2 More recently,
Berger, Müller, and Naeemi (2009) use their characterization of implementable alloca-
tion rules, based on well-known monotonicity and integrability conditions (in addition to
their decomposition monotonicity assumption), to show that Revenue Equivalence also
holds when the type space is a convex subset of a multi-dimensional Euclidean space and
the valuation function is convex in types.

In this paper, we explore the consequences for Revenue Equivalence and (dominant
strategy) implementation of dropping the assumptions of differentiability and convexity
of the valuation function with respect to types. These assumptions, suitable as they may
be in several economic situations, are not present in a variety of interesting problems.
Moreover, their absence compels us to introduce new techniques that may in turn be
valuable in economic settings lacking smooth or convex valuation functions. As an
illustration, consider the following example.

Example 1. The set of alternatives is X = (0, 1). There is a single agent with a quasi-
linear utility function u = v(x, θ) − ρ defined over alternatives x ∈ X and monetary
payments ρ ∈ R. Types, which are private information, lie in Θ = (0, 1). The agent’s
valuation function v : X ×Θ→ R is given by v(x, θ) = − |x− θ|. We think of X = (0, 1)
as the set of possible locations for a library. Our agent resides at location θ ∈ (0, 1) and
pays a linear cost to travel to the library, were it not located at θ. Note that for every
location x, the function θ 7→ v(x, θ) is neither convex nor fully differentiable on Θ; in
particular, its derivative with respect to θ fails to exist whenever θ = x.

The efficient allocation rule X∗ : Θ → X selects X∗(θ) = θ. Clearly X∗ is imple-
mentable, although the characterization theorem of Berger, Müller, and Naeemi (2009)
is moot, since the valuation function lacks convexity with respect to types. On the other
hand, the agent’s valuation is never differentiable with respect to types at the equilib-
rium points (X∗(θ), θ). Thus, although Milgrom and Segal (2002, Theorem 2) show
that, for any payment rule p : Θ → R implementing X∗, the indirect utility function
θ 7→ U(θ) ≡ v(X∗(θ), θ)− p(θ) is absolutely continuous and thus equal to the integral of
its derivative (which exists almost everywhere), their envelope theorem implies nothing
more than

− 1 = dv(X∗(θ), θ) ≤ DU(θ) ≤ dv(X∗(θ), θ) = 1,
1Notable recent exceptions to this approach are Heydenreich, Müller, Uetz, and Vohra (2009) and

Chung and Olszewski (2007).
2Krishna and Maenner (2001) obtained a similar result with weaker assumptions on the valuation

functions, at the cost of restricting the set of social alternatives and requiring the mechanisms to satisfy
certain differentiability property.
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where dv(x, ·) denotes the right-hand partial derivative of v(x, ·) with respect to θ and
dv(x, ·) denotes its left-hand counterpart. Thus, a priori, incentive compatibility of the
direct mechanism (X∗, p) implies nothing more than

U(θ1) − U(θ0) =
∫ θ1

θ0

s(θ) dθ, 0 < θ0, θ1 < 1; (1)

for some integrable selection s from the correspondence S : Θ ⇒ R defined by

S(θ) =
[

dv(X∗(θ), θ),dv(X∗(θ), θ)
]

= [− 1, 1].

This contrasts with the standard version of Revenue Equivalence, which relies on the
full differentiability or convexity of v(X∗(θ), ·) with respect to types to yield (a unique)
Dv(X∗(θ), θ) almost everywhere in Θ to take the place of the integrand in equation (1).3

One cannot conclude that the indirect utility is determined solely by X∗, since there is
the possibility that the selection s depends also on the payment rule. We claim that this
is the case.

Indeed, note X∗ is implementable by a constant payment rule p ≡ 0. The indirect
utility function is in this case U(θ) = 0 with DU(θ) = 0, for all θ ∈ Θ. Now consider
the alternative payment rule p defined on Θ by p(θ) = θ. To see that (X∗, p) is incentive
compatible, fix a type θ0 ∈ Θ. Reporting θ1 gives our agent payoffs of the form:

v(X∗(θ1), θ0) − p(θ1) =

{
− θ0, if θ1 ≤ θ0;

θ0 − 2θ1, if θ1 > θ0.

It follows that truth-telling is an equilibrium strategy. The indirect utility function U

generated by p satisfies U(θ1) − U(θ0) = − (θ1 − θ0), thus equation (1) holds for the
selection s(θ) = − 1.

A similar argument shows that the payment rule p, defined on Θ by p(θ) = − θ,
also implements X∗ and generates an indirect utility satisfying U(θ1)−U(θ0) = θ1− θ0,
with equation (1) valid for the selection s(θ) = 1. In this example, in particular, one
can show that for any integrable selection from the correspondence S, there exists a
payment rule that implements X∗ and generates an indirect utility function consistent
with expression (1). Take the selection s∗(θ) = θ, all θ ∈ Θ. It can be verified that the
payment rule p∗ such that p∗(θ) = − 1

2θ
2, all θ ∈ Θ, implements X∗ and generates an

indirect utility function for which U∗(θ1)− U∗(θ0) = − 1
2(θ2

1 − θ2
0). �

This example clearly illustrates how Revenue Equivalence is lost when the valuation
function fails to be differentiable or convex with respect to types. Note, however, that for
each allocation x ∈ X = (0, 1), the function θ 7→ v(x, θ) is Lipschitz on Θ = (0, 1) with

3In addition to Milgrom and Segal (2002), see Berger, Müller, and Naeemi (2009), Krishna and
Maenner (2001) and Williams (1999).
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Lipschitz constant `(x) = 1. We shall maintain these features in our general environment,
presented in Section 2. More specifically, we deal with a single agent with quasi-linear
preferences over alternatives x and money (extensions of the model and results to multi-
agent environment are straightforward). We assume that (A1) the allocation set X is a
measurable space; (A2) the type space Θ ⊆ Rk is open, convex and bounded (for k ≥ 1);
(A3) for each x, the function v(x, ·) is Lipschitz continuous on Θ, with bounded Lipschitz
constants. No further assumption is made on the primitives of the design model. We
notice that the cases of valuation functions that are linear, convex, or differentiable
in types are covered by our model (with the addition of an appropriate boundedness
condition).

Our assumption (A3) provides us with upper and lower subderivatives of the valua-
tion function with respect to types, which are then used to construct the subderivative
correspondence between any two types θ0, θ1 in Θ.4 In Section 3, we impose (M) a
measurability requirement on the subderivatives of the valuation with respect to types
evaluated at equilibrium points. We show that if the subderivative functions generated
by an implementable allocation rule are consistent with (M), the subderivative corre-
spondence between θ0 and θ1 is non empty-valued a.e. in the line segment connecting θ0
to θ1, closed-valued and measurable, with its integral being a non-empty, closed convex
subset of R. Our characterization result resorts to these properties (see Theorem 4):
an allocation rule is implementable if and only if the subderivative correspondence be-
tween any two types admits an integrable selection for which the integral monotonicity
condition and the path-integrability condition are satisfied.

It comes as no surprise that a monotonicity condition is present in our characteriza-
tion result. Since the seminal work of Rochet (1987), who characterized implementation
via cyclic monotonicity, work in mechanism design has been devoted to the study of situ-
ations where the weaker 2-cycle monotonicity is not only necessary but also sufficient for
implementation. Saks and Yu (2005) showed that this holds if the allocation set is finite
and the type space is convex (Bikhchandani, Chatterji, Lavi, Mu’alem, Nisan, and Sen
(2006) proved a similar result for auction-like environments). More recently, Archer and
Kleinberg (2008) and Berger, Müller, and Naeemi (2009) extended the characterization
of implementable allocation rules via weak monotonicity (plus a path integrability condi-
tion) to environments with arbitrary allocation sets and multi-dimensional convex type
spaces; the former under the assumption that valuations are linear in types, while the
latter assumed convex valuations instead. For our characterization theorem, we dispense
of both linearity and convexity assumptions. As a consequence, we work with (possibly
many) integral selections of the subderivative correspondence and state the monotonicity
and the path-integrability conditions in terms of these selections. At the end of Section 3
we relate our result and our assumption (M) to previous work.

Our characterization result does not imply that two incentive compatible mechanisms
with the same allocation rule generate equilibrium payoffs (hence revenue) that differ at

4Mathematical concepts and results employed in this paper are presented at the end of Section 2.
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most by a constant (see Example 1 above). Hence the standard version of the Revenue
Equivalence Principle fails. However, as we demonstrate in Section 4, Theorem 4 implies
that the difference in equilibrium payoffs generated by two incentive compatible mecha-
nisms with the same allocation rule is bounded, with the bounds depending solely on the
allocation rule. Moreover, we are able to show that if two payment schemes implement
the same allocation rule and generate indirect utility functions U and U ′, respectively
(where U ′ is not an affine translation of U), then for every convex combination of U and
U ′ there exists a payment scheme that implements the allocation rule and generates an
indirect utility equal to λU + (1 − λ)U ′. We end Section 4 with a sufficient condition
on the subderivative correspondence to obtain the standard version of Revenue Equiv-
alence. This condition is satisfied whenever the valuation function is linear, convex or
differentiable in types.

2 Preliminaries

2.1 The economic environment

We consider a mechanism design setting with only one agent; extensions of our model
and results to multi-agent settings are immediate. An outcome is a pair (x, ρ), where x
represents a social alternative from the allocation set X and the real number ρ represents
some quantity of a perfectly divisible, private commodity (money). Our agent has quasi-
linear preferences over outcomes, so that

u(x, θ, ρ) = v(x, θ) − ρ

represents the agent’s utility when allocation x ∈ X is selected and the amount ρ ∈ R is
paid by her, given that her privately known type is θ. We denote the agent’s type space
by Θ and refer to v : X ×Θ→ R as the agent’s valuation function.

The following assumptions are imposed on our model.

(A1) The pair (X ,XXX ) is a measurable space (XXX denotes a σ-algebra of subsets of X ).

(A2) The type space Θ is an open, convex, bounded subset of Rk (k ≥ 1).

(A3) For every x ∈ X , the function θ 7→ v(x, θ) is Lipschitz continuous on Θ; i.e., there
exists a positive real number `(x) such that

|v(x, θ)− v(x, θ̂)| ≤ `(x) ‖θ − θ̂‖,

for all θ, θ̂ ∈ Θ. Furthermore, the set of real numbers {`(x) : x ∈ X} is bounded
above, with ` = sup{`(x) : x ∈ X} < +∞.

(A1) does not impose any burdensome limitation on the allocation set, which is
allowed to be finite or infinite. The convexity of the type space is a standard assumption
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in the mechanism design literature with parametric valuations, and is satisfied in several
economic applications. (A2) considers an open convex Θ ⊆ Rk, but this could be relaxed
to include convex sets with non-empty interiors. The boundedness of the type space
plays a technical role in some our results. Assumption (A3) provides the existence of the
subderivative of the valuation function with respect to types, a weaker concept than that
of the standard directional derivative. No further restrictions are imposed a priori on the
primitives of our environment. In particular, in contrast to previous work in this topic,
we do not assume linearity, convexity, or full differentiability of the valuation function
with respect to types. Of course any such extra assumption, with the addition of an
appropriate boundedness condition, suffices to obtain (A3). Observe that Example 1
satisfies (A1) to (A3).

The allocation problem is resolved via direct mechanisms of the form (X, p). The
function X : Θ → X is called an allocation rule and the function p : Θ → R is called a
payment rule. We say that X is implementable if there exists a payment rule p such that
truth-telling is an equilibrium strategy for our agent; i.e.,

v(X(θ), θ) − p(θ) ≥ v(X(θ̂), θ) − p(θ̂), all θ, θ̂ ∈ Θ. (2)

In such situation, the direct mechanism (X, p) is said to be incentive compatible and the
function U : Θ→ R defined by

U(θ) ≡ v(X(θ), θ) − p(θ), all θ ∈ Θ, (3)

is called the agent’s indirect utility generated by (X, p). We shall restrict our analysis
to measurable allocation rules. Extensions of the notions of (dominant strategy) imple-
mentable allocation rules and (dominant strategy) incentive compatible mechanisms to
multi-agent settings are readily obtained.

2.2 Subderivatives and the integral of a correspondence

We introduce here concepts and results that are used in our characterization theorem.
For details, the reader is referred to Aubin and Frankowska (1990), Hildenbrand (1974)
and Rockafellar and Wets (1998).

Fix an allocation x ∈ X and a vector δ ∈ Rk, δ 6= 0. The right and left subderivatives
of the function θ 7→ v(x, θ) evaluated at θ̂ ∈ Θ in the direction δ are defined as the
following lower and upper limits:

dv(x, θ̂)(δ) := lim inf
r↓0

v(x, θ̂ + rδ)− v(x, θ̂)
r

; (4)

dv(x, θ̂)(δ) := lim sup
r↑0

v(x, θ̂ + rδ)− v(x, θ̂)
r

. (5)
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The Lipschitz continuity of v(x, ·) in (A3) implies that these subderivatives exist and are
finite for every θ̂ ∈ Θ, for all x ∈ X and δ ∈ Rk. Notice that dv(x, θ̂)(δ) = − dv(x, θ̂)(− δ).
Clearly, if θ 7→ v(x, θ) admits one-sided directional derivatives on Θ, then we can replace
the upper and lower limits in (4) and (5) with the usual one-sided limits, although
the above notation shall be maintained. Given types θ0, θ1 in Θ, denote their vector
difference by δ10 = θ1 − θ0 ∈ Rk. The line segment connecting θ0 to θ1 is the set
L(θ0, θ1) = { θ0 + α δ10 | α ∈ [0, 1] }. By (A2), one has L(θ0, θ1) ⊆ Θ for all θ0, θ1 ∈ Θ.
We shall consider the function α 7→ θ1

0(α) = θ0 + α δ10 mapping [0, 1] onto L(θ0, θ1).

Let B([0, 1]) denote the Borel σ-algebra of subsets of [0, 1]. Let S : [0, 1] ⇒ R be a
correspondence with closed images. Then S is said to be a measurable correspondence
if for every open set O in R, the inverse image S−1(O) = {α ∈ [0, 1] | S(α) ∩ O 6= ∅ }
belongs to B([0, 1]); in particular, domS = {α ∈ [0, 1] | S(α) 6= ∅ } and its complement
are measurable sets. Further, S is said to integrably bounded if there exists a non-
negative (Lebesgue) integrable function g defined on [0, 1] such that S(α) ⊆ [− g(α), g(α)]
for almost all α in [0, 1] (with respect to the Lebesgue measure). A selection s of the
correspondence S is a function α 7→ s(α) such that s(α) ∈ S(α), for almost all α ∈
[0, 1]. By the Measurable Selection Theorem, a measurable correspondence S : [0, 1] ⇒ R
admits a measurable selection s : [0, 1]→ R. If in addition S is integrably bounded, then
it admits an integrable selection. In such case, the integral of the correspondence S is
the non-empty set of real numbers{∫ 1

0
s(α) dα | s(α) ∈ S(α) a.e. in [0, 1]

}
.

By the Lyapunov’s Convexity Theorem, the integral of a closed-valued, measurable and
integrably bounded correspondence S : [0, 1] ⇒ R is a non-empty closed interval.

3 Characterizing implementable allocation rules

Consider a direct mechanism (X, p). It is not difficult to realize that, whenever (X, p) is
incentive compatible, the Lipschitz properties of the valuation function in (A3) imply the
Lipschitz continuity of the indirect utility function U generated by (X, p). Furthermore,
as our first lemma shows, U has two-sided directional derivatives almost every in the line
segment connecting any two types.

Lemma 2. Assume that p : Θ→ R implements the allocation rule X.

(a) The indirect utility function U generated by (X, p) is Lipschitz continuous on Θ.

(b) For every pair θ0, θ1 of distinct types in Θ, U admits two-sided directional deriva-
tives in the direction δ10 = θ1 − θ0 a.e. in the line segment L(θ0, θ1).
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Proof (a) Consider θ0, θ1 in Θ. From expression (3) one sees that

U(θ1)− U(θ0) ≤
{
v(X(θ1), θ1)− p(θ1)

}
−
{
v(X(θ1), θ0)− p(θ1)

}
= v(X(θ1), θ1) − v(X(θ1), θ0)

≤ `(X(θ1)) ‖θ1 − θ0‖ ≤ ` ‖θ1 − θ0‖;

where the last two inequalities follow from (A3). Reversing the roles of θ0 and θ1, one
readily concludes that |U(θ1) − U(θ0)| ≤ `‖θ1 − θ0‖. Since θ0 and θ1 were arbitrarily
chosen, this shows that U is Lipschitz on Θ.

(b) Given distinct types θ0, θ1 in Θ, let θ1
0(α) = θ0 +α δ10 belong to the line segment

L(θ0, θ1), for α ∈ [0, 1]. Define the real-valued function µ on [0, 1] by µ(α) = U(θ1
0(α)).

It is readily seen that µ is Lipschitz continuous. Indeed, for any α, α′ in [0, 1] one has:

|µ(α)− µ(α′)| = |U(θ1
0(α))− U(θ1

0(α′))|
≤ ` ‖θ1

0(α)− θ1
0(α′)‖ = ` ‖δ10‖ |α− α′|,

where the inequality in the above expression follows from part (a) of the lemma. Thus, µ
is Lipschitz on [0, 1] and therefore absolutely continuous and differentiable a.e. in [0, 1].
In particular, if µ is differentiable at α ∈ (0, 1), then we deduce:

Dµ(α) = lim
r→0

µ(α+ r) − µ(α)
r

= lim
r→0

U(θ1
0(α+ r)) − U(θ1

0(α))
r

= lim
r→0

U(θ1
0(α) + r δ10) − U(θ1

0(α))
r

= DU(θ1
0(α))(δ10),

where the right-hand side of the last equality denotes the two-sided directional derivative
of U evaluated at θ1

0(α) in the direction δ10 . The result now follows. �

Milgrom and Segal (2002) obtained an analogue of Lemma 2(a) under the alternative
hypothesis of absolute continuity of v(x, ·) on a one-dimensional type space, plus an
integral bound condition on the derivative of v with respect to types. Any Lipschitz
function defined on an interval is absolutely continuous. However, the extension of the
absolute continuity concept to multi-dimensional settings is not straightforward.5 On
the other hand, the Lipschitz continuity property extends naturally to multi-dimensional
domains and allows us to work with upper and lower subderivatives of the function
θ 7→ v(x, θ) everywhere in the type space.

Observe that Lemma 2(b) does not imply that U is fully differentiable a.e. in every
curve connecting θ0 and θ1. In fact, there may be many (piecewise) smooth curves

5For instance, it is possible to construct a convex function on a plane that fails to be absolutely
continuous; see Friedman (1940) for details. Such function, of course, is Lipschitz on any compact set
contained in the interior of its domain.
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joining θ0 to θ1 for which the indirect utility function U is nowhere fully differentiable
in such curves.6 What Lemma 2(b) states is that the indirect utility generated by an
incentive compatible direct mechanism admits two-sided directional derivatives in the
direction δ10 almost everywhere in the line segment L(θ0, θ1). This property is used
to infer an important relationship between the upper and lower subderivatives of the
valuation function in the line segment connecting θ0 to θ1. To establish this relationship,
define the functions s(·)(δ10) and s(·)(δ10) on [0, 1] by

s(α)(δ10) ≡ dv(X(θ1
0(α)), θ1

0(α))(δ10), s(α)(δ10) ≡ dv(X(θ1
0(α)), θ1

0(α))(δ10). (6)

We make the following additional assumption to obtain a characterization of imple-
mentable allocation rules.

(M) Given an allocation rule X : Θ → X , for every pair of types θ0, θ1 ∈ Θ the sub-
derivative functions α 7→ s(α)(δ10) and α 7→ s(α)(δ10), defined on [0, 1] by expres-
sion (6), are B([0, 1])-measurable.

Our assumption (M) may be easily verified in some circumstances; this happens in Ex-
ample 1, where for Θ = (0, 1) the functions θ 7→ dv(X(θ), θ)(1) and θ 7→ dv(X(θ), θ)(1)
are constant. At the end of this section, we discuss important cases where (M) is satisfied
and relate our assumption to recent approaches in the literature.

Using (6), we define the subderivative correspondence S(·)(δ10) : [0, 1] ⇒ R between
types θ0 and θ1 by

S(α)(δ10) =
{
r ∈ R | s(α)(δ10) ≤ r ≤ s(α)(δ10)

}
. (7)

The image S(α)(δ10) is empty for each α in [0, 1] for which s(α)(δ10) > s(α)(δ10). When-
ever the opposite inequality holds, S(α)(δ10) is a non-empty set containing all real num-
bers between the lower and the upper subderivatives of the valuation v with respect to
types evaluated at (X(θ1

0(α), θ1
0(α)), where these subderivatives are taken in the direction

δ10 . In such case, write the image of the subderivative correspondence as the closed inter-
val S(α)(δ10) = [s(α)(δ10), s(α)(δ10)]. Observe that since dv(x, θ)(δ10) = −dv(x, θ)(− δ10),
one has S(α)(− δ10) = −S(α)(δ10).

The subderivative correspondence satisfies several important properties.

Lemma 3. Assume (A1) to (A3) are satisfied, and suppose that (M) holds for the
allocation rule X : Θ → X . If X is implementable, then for every pair of distinct types
θ0, θ1 ∈ Θ, the subderivative correspondence S(·)(δ10) defined in (7) has non-empty images
a.e. in [0, 1]. Moreover, S(·)(δ10) is closed-valued, measurable and integrably bounded.

6As an illustration, let f(y1, y2) = |y2|, ŷ = (0, 0) and y = (1, 0). One sees that f is nowhere
differentiable on the line segment connecting ŷ to y. Krishna and Maenner (2001) present a more
dramatic example.
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Proof Suppose p : Θ→ R is a payment scheme that implements X. Fix arbitrary types
θ0, θ1 ∈ Θ, θ0 6= θ1. Then for every θ1

0(α) ∈ L(θ0, θ1), for any scalar r sufficiently small,
the indirect utility function U generated by (X, p) satisfies

U(θ1
0(α) + r δ10) − U(θ1

0(α)) ≥ v(X(θ1
0(α)), θ1

0(α) + r δ10) − p(θ1
0(α))

− v(X(θ1
0(α)), θ1

0(α)) + p(θ1
0(α))

= v(X(θ1
0(α)), θ1

0(α) + r δ10) − v(X(θ1
0(α)), θ1

0(α)).

Thus, if r > 0 then it follows from the above expression that

v(X(θ1
0(α)), θ1

0(α) + r δ10)− v(X(θ1
0(α)), θ1

0(α))
r

≤ U(θ1
0(α) + r δ10)− U(θ1

0(α))
r

, (8)

whereas if r < 0 we have

U(θ1
0(α) + r δ10)− U(θ1

0(α))
r

≤ v(X(θ1
0(α)), θ1

0(α) + r δ10)− v(X(θ1
0(α)), θ1

0(α))
r

. (9)

By Lemma 2(b), U admits two-sided directional derivatives in the direction δ10 almost
everywhere in L(θ0, θ1). Thus, taking the lower limit as r ↓ 0 to (8) and the upper limit
as r ↑ 0 to (9), we infer that almost everywhere in [0, 1] the following holds:

s(α)(δ10) ≤ DU(θ1
0(α))(δ10) ≤ s(α)(δ10). (10)

This shows that the subderivative correspondence S(·)(δ10) has non-empty images a.e. in
[0, 1], as desired.

Clearly, S(·)(δ10) is closed valued. To show that it is a measurable correspondence,
define the correspondence T : [0, 1] ⇒ R by T (α) = {s(α)(δ10)}∪{s(α)(δ10)} when expres-
sion (10) is satisfied, and T (α) = ∅, otherwise. Since the set {α ∈ [0, 1] | T (α) = ∅ } has
zero measure, we deduce from our assumption (M) that T is a measurable correspon-
dence, and therefore so is its convex hull conv T = S(·)(δ10).7 Further, notice that the
type space is bounded and for every x ∈ X , (A3) implies that |dv(x, θ1

0(α))(δ10)| ≤ `‖δ10‖
and similarly |dv(x, θ1

0(α))(δ10)| ≤ `‖δ10‖, for all α ∈ [0, 1]. Hence, s(·)(δ10) and s(·)(δ10)
are integrably bounded functions, which shows that S(·)(δ10) is an integrably bounded
correspondence. �

The subderivative correspondence S(·)(δ10) between θ0 and θ1 is said to be regular if
it is non empty-valued a.e. in [0, 1], closed-valued, measurable and integrably bounded.
Thus, Lemma 3 states that if our assumption (M) is satisfied for an implementable
allocation rule X, the subderivative correspondence between any two types generated
by X is regular. In this case, the integral of S(·)(δ10) is a non-empty, closed interval. In

7Here we use two facts: (i) the (countable) union of measurable correspondences is measurable; (ii) the
convex hull of a measurable correspondence is also measurable. See the references given in Section 2.2.
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particular, α 7→ s(α)(δ10) and α 7→ s(α)(δ10) are integrable selections, with∫ 1

0
s(α)(δ10) dα ≤

∫ 1

0
s(α)(δ10) dα ≤

∫ 1

0
s(α)(δ10) dα

being satisfied for every integrable selection α 7→ s(α)(δ10) of S(·)(δ10).

Our main result is the following characterization theorem. It is understood that if
θ0 = θ1, then s(·)(δ10) = s(·)(δ10) = 0.

Theorem 4. Assume (A1) to (A3) are satisfied. Suppose the allocation rule X : Θ→ X
is such that (M) is also satisfied. The following statements are then equivalent.

(a) The allocation rule X : Θ→ X is implementable.

(b) For every subset {θ0, θ1, θ2} of Θ, letting δmn = θm − θn for n,m = 0, 1, 2, the
subderivative correspondence S(·)(δmn ) between θn and θm is regular and admits an
integrable selection α 7→ s∗(α)(δmn ) that satisfies the integral monotonicity condi-
tion:

v(X(θm), θm)−v(X(θm), θn) ≥
∫ 1

0
s∗(α)(δmn ) dα ≥ v(X(θn), θm)−v(X(θn), θn).

Moreover, these selections satisfy the path-integrability condition:∫ 1

0
s∗(α)(δ10) dα +

∫ 1

0
s∗(α)(δ21) dα +

∫ 1

0
s∗(α)(δ02) dα = 0.

Proof (a) =⇒ (b) Fix a subset {θ0, θ1, θ2} of Θ. We first note that from Lemma 3,
S(·)(δmn ) is a regular correspondence. Denote θmn (α) = θn + α δmn , for α ∈ [0, 1] and
n,m = 0, 1, 2. Notice that from Lemma 2(b), the function µmn defined on the interval
[0, 1] by µmn (α) = U(θmn (α)) is absolutely continuous, with Dµmn (α) = DU(θmn (α))(δmn )
for almost all α ∈ [0, 1]. Therefore, we have

µmn (1)− µmn (0) = U(θm)− U(θn) =
∫ 1

0
DU(θmn (α))(δmn ) dα.

This expression is combined with (10) to obtain∫ 1

0
s(α)(δmn ) dα ≤ U(θm) − U(θn) ≤

∫ 1

0
s(α)(δmn ) dα. (11)

The convexity of the integral of the subderivative correspondence S(·)(δmn ) provides
us with the existence of an integrable selection s∗(·)(δmn ) such that

∫ 1
0 s
∗(α)(δmn ) dα =
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U(θm)− U(θn). Moreover, from the proof of Lemma 2(a), we notice that

v(X(θm), θm) − v(X(θm), θn) ≥ U(θm) − U(θn) =
∫ 1

0
s∗(α)(δmn ) dα.

Exchanging the roles of θn and θm, one has

v(X(θn), θn) − v(X(θn), θm) ≥ U(θn) − U(θm) = −
∫ 1

0
s∗(α)(δmn ) dα.

The integral monotonicity condition is obtained combining these two equations.
Clearly, we have (U(θ1)−U(θ0))+(U(θ2)−U(θ1))+(U(θ0)−U(θ2)) = 0. Therefore,

using the selection s∗(·)(δmn ) from the subderivative correspondence S(·)(δmn ) for each
respective case, we immediately obtain the integrability condition.

(b) =⇒ (a) Fix a type θ0 ∈ Θ. Define the payment rule p : Θ→ R by

p(θ1) = v(X(θ1), θ1) −
∫ 1

0
s∗(α)(δ10) dα, for all θ1 ∈ Θ .

Here s∗(·)(δmn ) are integrable selections of the regular subderivative correspondences
S(·)(δmn ) for which the assumptions of the theorem are satisfied. We claim that X is
implementable by p. Indeed, for any two types θ1, θ2 ∈ Θ, the payment difference is

p(θ2)− p(θ1) = v(X(θ2), θ2)− v(X(θ1), θ1) +
∫ 1

0
s∗(α)(δ10) dα+

∫ 1

0
s∗(α)(δ02) dα

= v(X(θ2), θ2) − v(X(θ1), θ1) −
∫ 1

0
s∗(α)(δ21) dα,

where the first equality follows from the fact that s∗(·)(δ02) = − s∗(·)(δ20), and the last
equality follows from the integrability condition. Using this expression, we deduce from
the integral monotonicity condition that{

v(X(θ1), θ1) − p(θ1)
}
−
{
v(X(θ2), θ1) − p(θ2)

}
= v(X(θ1), θ1) − v(X(θ2), θ1) + p(θ2) − p(θ1)

= v(X(θ2), θ2) − v(X(θ2), θ1) −
∫ 1

0
s∗(α)(δ21) dα ≥ 0.

Hence, it follows that v(X(θ1), θ1)− p(θ1) ≥ v(X(θ2), θ1)− p(θ2). Since θ1 and θ2 were
arbitrarily chosen, this shows that the payment rule p implements X, as desired. �

It is not difficult to see that one can replace the global conditions of part (b) of
Theorem 4 with their local versions, an approach that was introduced by Archer and
Kleinberg (2008) for the case of valuation functions that are linear in types (see Berger,
Müller, and Naeemi (2009) for the case of valuations that are convex in the type space).
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This relies on the fact that for all types θ0, θ1, θ2 in Θ, the line segments L(θn, θm) (n,m =
0, 1, 2) and their convex hull are compact subsets of Rk. Therefore, one can replace
an open cover of any such set with a finite subcover to obtain the desired conditions.
We state this formally in the next proposition, whose proof can be adapted from the
arguments of Lemmas 3.5 and 3.2 in Archer and Kleinberg (2008).

Proposition 5. Assume (A1) to (A3) are satisfied. Assume in addition that (M) is
satisfied for the allocation rule X : Θ→ X . The following are equivalent:

(a) The allocation rule X : Θ→ X is implementable.

(b) For each θ0 ∈ Θ, there exists an open neighborhood O of θ0 such that for every
θ1, θ2 ∈ O, for n,m = 0, 1, 2, the subderivative correspondence S(·)(δmn ) is regular
and admits an integrable selection s∗(·)(δmn ) satisfying the local integral monotonic-
ity condition:

v(X(θm), θm)−v(X(θm), θn) ≥
∫ 1

0
s∗(α)(δmn ) dα ≥ v(X(θn), θm)−v(X(θn), θn).

Further, the selections s∗(·)(δmn ) satisfy the local integrability condition:∫ 1

0
s∗(α)(δ10) dα +

∫ 1

0
s∗(α)(δ21) dα +

∫ 1

0
s∗(α)(δ02) dα = 0.

We mention that the integrability condition is trivially satisfied in one-dimensional
type spaces, in which case the characterization of implementable allocation rules is
achieved through the integral monotonicity condition alone, provided (A1) to (A3) and
(M) are in place.

Example 1 (continued). Write the regular subderivative correspondence generated by
the efficient allocation rule X∗ as θ ⇒ S(θ) = [−1, 1]. Fix a type θ0 ∈ (0, 1). Since
X∗(θ) = θ, the integral monotonicity condition can be expressed as

|θ1 − θ0| ≥
∫ θ1

θ0

s(θ) dθ ≥ − |θ1 − θ0|, all θ1 ∈ (0, 1).

Moreover, since
∫ θ1
θ0
s(θ) dθ = |θ1 − θ0| and

∫ θ1
θ0
s(θ) dθ = − |θ1 − θ0|, it follows that X∗

can be implemented by any payment scheme of the form

p(θ1) = −
∫ θ1

θ0

s(θ) dθ,

where θ 7→ s(θ) is an integrable selection of the subderivative correspondence θ ⇒ S(θ);
three such schemes were given in the Introduction. Observe that the indirect utility
function generated by an incentive compatible mechanism may be (strictly) increasing,
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(strictly) decreasing, or constant in types. Notice that equilibrium payoffs, hence equi-
librium revenues, are not equivalent up to an additive constant. �

When is (M) satisfied? In some circumstances, it is immediate to verify this condition
directly (see Example 1 and also Example 11 in Section 4). The next proposition may
serve as a useful tool for this task, when the allocation set is a metric space.

Proposition 6. Assume that (A1) to (A3) are satisfied. Assume, in addition, that the
allocation set X is a complete separable metric space. Suppose that for every direction
δ ∈ Rk, the following conditions hold:

(a) For every x ∈ X , the functions dv(x, ·)(δ) and dv(x, ·)(δ) are B(Θ)-measurable.

(b) For every θ ∈ Θ, the functions dv(·, θ)(δ) and dv(·, θ)(δ) are continuous on X .

Then for any measurable allocation rule X : Θ→ X , (M) is satisfied.

Proof Fix a direction δ ∈ Rk for the remainder of the proof. It suffices to show
that θ 7→ dv(X(θ), θ)(δ) and θ 7→ dv(X(θ), θ)(δ) are B(Θ)-measurable. Since the al-
location rule X is measurable, there exists a sequence of simple measurable functions
{Xn : Θ → X}∞n=1 that converges pointwise to X. By assumption, for allocation ev-
ery allocation x, the function θ 7→ dv(x, θ)(δ) is measurable, hence it follows that for
each positive integer n the function θ 7→ dv(Xn(θ), θ)(δ) is also measurable. We now
use the continuity of dv(·, θ)(δ) on X to obtain that, for each θ ∈ Θ, dv(X(θ), θ)(δ) =
limn→∞ dv(Xn(θ), θ)(δ). This shows that the function θ 7→ dv(X(θ), θ)(δ) is the point-
wise limit of B(Θ)-measurable functions, which give us the desired conclusion. The
argument for the lower subderivative function is analogous. �

In some environments of special economic interest, (M) will follow directly from the
structure of the design problem, as we now discuss.

Consider, as in Archer and Kleinberg (2008), a setting with a bounded allocation
set X ⊆ Rk and XXX = B(X ), with an open, bounded convex type space Θ ⊆ Rk, and
with valuation functions that are linear in types, so that θ 7→ v(x, θ) = x · θ for each
allocation x. Notice that (A1) to (A3) are satisfied. Let X : Θ→ X be any measurable,
integrably bounded allocation rule. One readily sees that the derivative of v with respect
to θ evaluated at (X(θ), θ) is Dv(X(θ), θ) = X(θ), therefore (M) is satisfied and our
characterization theorem applies.

Berger, Müller, and Naeemi (2009) deal with an arbitrary allocation set, a convex
type space in Rk, and valuations that are convex functions of types. In this case, the
assumptions of Proposition 6 may be violated, as the directional derivative of a convex
function may be discontinuous. However, directional derivatives of (one-dimensional)
convex functions are sufficiently well-behaved for our characterization result to be appli-
cable. First, a preliminary result taken from Hildenbrand (1974, (7) p. 42).
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Proposition 7. Let (X ,XXX ) be a measurable space and f : X × [0, 1] be a bounded real-
valued function. Suppose the following conditions hold:

(a) For every α ∈ [0, 1], the function f(·, α) is XXX -measurable.

(b) For every x ∈ X , the function f(x, ·) is right-continuous.

Then the function f is XXX ⊗ B([0, 1])-measurable.

In the above proposition, XXX ⊗ B([0, 1]) denotes the product σ-algebra of XXX and
B([0, 1]). We shall use this to prove the following result, which under a mild measur-
ability requirement on the upper and lower subderivative functions, allows us to apply
Theorem 4 to the case of valuations that are convex in types.

Proposition 8. Assume that (A1) to (A3) are satisfied. Suppose also that for every
allocation x ∈ X , the function θ 7→ v(x, θ) is convex in Θ, and that for every direction
δ ∈ Rk and every type θ ∈ Θ, both d(·, θ)(δ) and d(·, θ)(δ) are XXX -measurable. Then for
any measurable allocation rule X : Θ→ X , assumption (M) is satisfied.

Proof Fix any θ0, θ1 ∈ Θ. From (A3) and the convexity of the valuation with respect
to types, it follows that for every x ∈ X , dv(x, θ1

0(α))(δ10) is equal to the right-derivative
of the convex scalar function α 7→ w(α;x, δ10) = v(x, θ1

0 + α δ10) for every α ∈ [0, 1). It
follows that the function α 7→ dv(x, θ1

0(α))(δ10) is right-continuous on [0, 1). Since by
assumption dv(·, θ1

0(α))(δ10) is XXX -measurable for every α ∈ [0, 1], we use Proposition 7 to
infer that the function d(·, ·)(δ10) is XXX ⊗B([0, 1])-measurable. Since the allocation rule X
is measurable, it is seen that the function α 7→ (X(θ1

0(α)), θ1
0(α)) is B([0, 1])-measurable,

from which we obtain the measurability of α 7→ s(α)(δ10) = dv(X(θ1
0(α)), θ1

0(α))(δ10) by
noticing that the composition of measurable functions is also measurable. The argument
for s(·)(δ10) is similar (except that now we use the left-derivative of the respective convex
scalar function. �

4 A generalized Revenue Equivalence theorem

Our characterization result in Section 3 does not imply that the indirect utility generated
by an incentive compatible mechanism is completely determined by the allocation rule
alone. Thus the standard version of the Revenue Equivalence theorem may fail. On the
other hand, if X is implemented by a payment rule p, then from Theorem 4 one infers
that the difference in the indirect utility generated by (X, p) at θ1 and θ0 is bounded by
X alone, since the upper and lower bounds of U(θ1) − U(θ0) are independent of p. We
use this fact to obtain a generalized version of the Revenue Equivalence Principle.

Proposition 9. Assume (A1) to (A3) hold and let X : Θ → X be an allocation rule
for which (M) is satisfied. Consider two payment rules, p : Θ→ R and p′ : Θ→ R, that
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implement X. Let U and U ′ denote the indirect utility functions generated by the direct
mechanisms (X, p) and (X, p′), respectively. For all θ0, θ1 ∈ Θ, one has

∣∣(U(θ1)− U(θ0)
)
−
(
U ′(θ1)− U ′(θ0)

)∣∣ ≤ ∫ 1

0

{
s(α)(δ10) − s(α)(δ10)

}
dα. (12)

Proof By Theorem 4, since X is implemented by p and by p′, it follows that both
indirect utility functions U and U ′ must satisfy expression (11), from where we deduce
the inequalities∫ 1

0
s(α)(δ10) dα ≤ U(θ1)− U(θ0) ≤

∫ 1

0
s(α)(δ10) dα, and

−
∫ 1

0
s(α)(δ10) dα ≤ U ′(θ0)− U ′(θ1) ≤ −

∫ 1

0
s(α)(δ10) dα.

Equation (12) now follows by adding up these two expressions. �

Let X be implementable, and fix a type θ0 ∈ Θ. Then, from the proof of The-
orem 4, for every type θ1 one can use an integrable selection from the regular sub-
derivative correspondence S(·)(δ10), satisfying the integral monotonicity and the inte-
grability conditions, to define a payment scheme that implements X. Suppose s(·)(δ10)
and s′(·)(δ10) are two such selections. Thus, the payment schemes p and p′ defined by
p(θ1) = v(X(θ1), θ1) −

∫ 1
0 s(α)(δ10) dα and p′(θ1) = v(X(θ1), θ1) −

∫ 1
0 s
′(α)(δ10) dα, all

θ1 ∈ Θ, implement X and generate indirect utilities for which U(θ0) = U ′(θ0) = 0. In
this case, (12) reduces to

|U(θ1)− U ′(θ1)| ≤
∫ 1

0

{
s(α)(δ10) − s(α)(δ10)

}
dα.

This last implies that, given two incentive compatible mechanisms for which the indirect
utility levels of type θ0 are zero, the difference in the indirect utility functions is bounded
by the allocation rule alone (since X alone determines the upper and lower subderivative
functions), even though this difference in equilibrium payoff does not vanish.

Notice also that from the convexity of the integral of the subderivative correspon-
dence, given λ ∈ [0, 1], for every θ1 ∈ Θ there exists an integrable selection s′′(·)(δ10)
such that

∫ 1
0 s
′′(α)(δ10) = λ

∫ 1
0 s(α)(δ10) + (1− λ)

∫ 1
0 s
′(α)(δ10). Clearly, s′′(·)(δm0 ) satisfies

the integral monotonicity and the integrability conditions. Thus, the payment scheme
p′′ : Θ→ R defined by

p′′(θ1) = v(X(θ1), θ1) −
∫ 1

0
s′′(α)(δ10) dα = λp(θ1) + (1− λ)p′(θ1),

all θ1 ∈ Θ, implements X as well. The preceding argument shows the following.
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Corollary 10. If U and U ′ are indirect utility functions generated by two direct mech-
anisms sharing the same allocation rule X and assigning U(θ0) = U ′(θ0) = 0 for some
θ0 ∈ Θ, then for every λ ∈ [0, 1] there exists a direct mechanism (X, p′′) such that
U ′′ = λU + (1− λ)U ′.

The following example illustrates our generalized version of Revenue Equivalence.

Example 11. The allocation set is X = (0, 1) and the type space is Θ = (0, 1). The
agent’s valuation function v : X → Θ is given by

v(x, θ) =

{
θx, if x ≤ θ;
2θ2 − θx, if x > θ.

One can think of x ∈ X as the quantity traded of some good; our agent has positive
marginal utility θ for the first θ units, and negative marginal utility − θ for additional
amounts. Notice that for each alternative x, the function θ 7→ v(x, θ) is neither convex
on Θ nor differentiable at θ = x. It is however Lipschitz continuous, with Lipschitz
constant `(x) = 3x. Thus (A1) to (A3) are satisfied.

The efficient allocation rule X∗ selects X∗(θ) = θ, for all θ ∈ Θ. Observe that at
every equilibrium point (X∗(θ), θ), one has dv(X∗(θ), θ) = θ and dv(X∗(θ), θ) = 3θ,
hence (M) is also in place. Define the subderivative correspondence S : Θ ⇒ R by

S(θ) =
[

dv(X∗(θ), θ), dv(X∗(θ), θ)
]

=
[
θ, 3θ

]
.

Fix an arbitrary type θ0 ∈ (0, 1) for the remainder of the example. Consider the
selection θ 7→ s(θ) = θ. It can be verified that for every θ1 ∈ (0, 1), the following holds:

v(X∗(θ1), θ1)− v(X∗(θ1), θ0) ≥
∫ θ1

θ0

s(θ) dθ ≥ v(X∗(θ0), θ1)− v(X∗(θ0), θ0).

Thus, the integral monotonicity condition is satisfied. We infer from Theorem 4 that the
payment rule p, defined on Θ by p(θ) = 1

2(θ2 + θ2
0), all θ ∈ Θ, implements X∗. Indeed,

suppose our agent is of type θ1; reporting θ2 yields her to payoffs of the form:

v(X∗(θ2), θ1) − p(θ2) =

{
θ1θ2 − 1

2θ
2
2 − 1

2θ
2
0, if θ2 ≤ θ1;

2θ2
1 − θ1θ2 − 1

2θ
2
2 − 1

2θ
2
0, if θ2 > θ1.

The above expression is strictly increasing in θ2 for θ2 < θ1, strictly decreasing in θ2
for θ2 > θ1, and reaches its maximum at θ2 = θ1. Thus, truth-telling is an equilibrium
strategy. Notice that the agent’s indirect utility function U generated by (X∗, p) satisfies
U(θ1) = 1

2(θ2
1 − θ2

0).
Consider instead the selection θ 7→ s∗(θ) = 2θ. The reader can verified that the

integral monotonicity condition is satisfied, and that the constant payment rule p∗, de-
fined on Θ by p∗(θ) = θ2

0, implements X∗ and generates an indirect utility U∗ for which
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U∗(θ1) = θ2
1 − θ2

0. Notice that the difference between indirect utilities U and U∗ is
bounded by the difference between the integral of the selections θ 7→ s(θ) = 3θ and
θ 7→ s(θ) = θ, since

∣∣1
2(θ2

1 − θ2
0)
∣∣ =

∣∣U(θ1)− U∗(θ1)
∣∣ ≤ ∫ θ1

θ0

{
s(θ)− s(θ)

}
dθ = |θ2

1 − θ2
0|.

We point out that in this example, the integral monotonicity condition is not satisfied
for every integrable selection of the correspondence S(θ) = [θ, 3θ]. In particular, for
θ 7→ s(θ) = 3θ, monotonicity is violated. It follows that the payment scheme p associated
with s, where p(θ) = 3

2θ
2
0 − 1

2θ
2 for all θ ∈ Θ, does not implement X∗. Indeed, for any

θ1, θ2 ∈ Θ, the agent payoffs of reporting θ2 when her true type is θ1 are

v(X∗(θ2), θ1) − p(θ2) =

{
θ1θ2 − 3

2θ
2
0 + 1

2θ
2
2, if θ2 ≤ θ1;

2θ2
1 − θ1θ2 − 3

2θ
2
0 + 1

2θ
2
2, if θ2 > θ1.

These payoffs are increasing in θ2 everywhere on Θ, thus our agent has incentives to
overstate her type. �

It is clear that in Example 11, as in Example 1, the standard version of Revenue
Equivalence fails, since the different payment schemes that can be used to implement
X∗ are not equivalence up to a constant, and thus the indirect utility of our agent
depend on the payment scheme as well as on the allocation rule X∗. Nonetheless, if
(A1) to (A3) and (M) are satisfied, one can use Proposition 9 to establish a precise
range of values such that any incentive compatible mechanism generates indirect utility
functions with differences lying inside this range. Clearly, if for all types θ0, θ1, the
subderivative correspondence S(·)(δ10) between θ0 and θ1 is single-valued a.e. on [0, 1],
then the standard version of Revenue Equivalence is obtained.

Proposition 12. Assume that (A1) to (A3) are satisfied. Suppose (M) holds for the im-
plementable allocation rule X : Θ→ X , and let p : Θ→ R and p′ : Θ→ R be two payment
rules that implement X, with U and U ′ denoting the indirect utility functions generated by
(X, p) and (X, p′), respectively. If for every pair θ0, θ1 ∈ Θ, one has s(α)(δ10) = s(α)(δ10)
for almost all α ∈ [0, 1], then U and U ′ differ at most by a constant.

Proof Suppose for all θ0, θ1 in Θ, it is the case that s(α)(δ10) = s(α)(δ10) a.e. in [0, 1].
Readily from expression (12), it follows that U(θ1)−U(θ0) = U ′(θ1)−U ′(θ0). Therefore,
the indirect utilities U and U ′ differ at most by a constant. �

If the valuation function θ 7→ v(x, θ) is fully differentiable in Θ, for every x ∈ X ,
then the standard version of Revenue Equivalence follows from Proposition 12. Revenue
Equivalence also holds when the function θ 7→ v(x, θ) is convex in Θ, for all allocations
x ∈ X , and admits bounded directional derivatives everywhere in the type space (in
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which case the subderivatives are equal to the directional derivatives), since one has that
for all θ̂ ∈ Θ, all δ ∈ Rk,

dv(x, θ̂)(δ) = lim
r↑0

v(x, θ̂ + rδ)− v(x, θ̂)
r

≤ lim
r↓0

v(x, θ̂ + rδ)− v(x, θ̂)
r

= dv(x, θ̂)(δ).

Recalling that equation (10) requires that at almost all equilibrium points (X(θ), θ) the
reverse inequality holds, one sees that the condition of Proposition 12 is in place.
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