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Abstract. In this paper we compare the equilibria of a mechanism with a large �nite

number of participants to the equilibria of an analogous mechanism featuring a nonatomic

continuum of participants. We show that the equilibrium strategies of the two models

will converge as the number of participants in the large �nite mechanism goes to in�nity

under mild technical conditions. Given that these conditions hold, we can use tractable

nonatomic models to analyze the large market behavior of otherwise intractable game-

theoretic models. We apply these results to show that the equilibrium of a uniform price

auction with a large number of agents and goods can be approximated by a nonatomic

exchange economy. From this approximation, we are able to show that the uniform price

auction is approximately e¢ cient with a large number of participants even when agents

have complementary preferences for multiple units or preferences have a common value

component, both cases that have resisted analysis using game-theoretic techniques. In a

second application, we show that the Markov perfect equilibria of a dynamic market com-

petition model approaches the dynamic competitive equilibria of a game with a continuum

of agents in the limit as the number of competitors in the large �nite model approaches

in�nity.
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1. Introduction

Market mechanisms are analyzed using one of two paradigmatic classes of models. In

game-theoretic models, �nite sets of atomic agents choose optimal strategies given their

beliefs about the actions of the other actors. Following Aumann [7], another framework

for modeling economies with a large number of agents is the equilibria of nonatomic models

with a continuum of agents. In nonatomic models, the agents take actions that are optimal

given economic aggregates, such as prices or �rm production, that are consistent with the

agents�actions but exogenous to any single agent�s decision. A researcher�s choice to use

a game-theoretic or a nonatomic model is driven by whether strategic interactions between

the agents are important factors in determining the economic outcomes.

Intuition suggests that if the economic outcomes are continuous in the aggregate distri-

bution of agent actions,1 then a single agent will have negligible in�uence on outcomes as

the number of agents increases. This continuity implies that the game-theoretic equilibria

may converge to the equilibria of the corresponding nonatomic game as the number of

agents increases. As a consequence of this convergence, the decision about whether to use

a game-theoretic or a nonatomic model will have an inconsequential e¤ect on the predicted

economic outcomes if the market is su¢ ciently large. However, it has not been obvious un-

der what conditions this intuition is valid in the context of complex market models such as

double auctions. Therefore, researchers often elect to use game-theoretic models for large

markets and show through an analysis of the equilibria that economic aggregates become

exogenous to a single agent�s decisions in the limit as the number of agents approaches in-

�nity. Due to the di¢ culty of �nding the game-theoretic equilibria, researchers are forced

to place restrictions on the model that are not dictated by the economic primitives.

A primary contribution of this paper is to outline formal conditions under which nonatomic

models yield economic predictions that approximate those of analogous game-theoretic

models with a large �nite set of agents. The two principal requirements are that the

model satisfy a semi-anonymity and a continuity condition. The semi-anonymity condi-

tion requires that an agent�s outcome in the market depends only on a message he sends

the market authority (i.e. a demand curve) and the market aggregates (i.e. market clear-

ing prices) that are determined by the distribution of announcements of the agents in the

market. The continuity condition demands that an agent�s market outcome be continuous

in the distribution of announcements of the agents in the economy. As the distribution

1Given a set of agent actions fx1; :::; xNg, the realized aggregate distribution of agent actions is an empirical
cumulative distribution function de�ned as F (x) =

PN
i=1 1fxi � xg where 1fxi � xg is an indicator function

for the event fxi � xg:
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of agent messages is an element of an in�nite dimensional space, an important step in

the development of our conditions is identifying the form of continuity required. Given

that the semi-anonymity and continuity conditions can both be veri�ed from the economic

primitives of the market model prior to discovering an equilibrium of the economy, there

is no need for the researcher to engage in the arduous task of game-theoretic analysis to

establish asymptotic equivalence of the game-theoretic and nonatomic equilibria.

This paper describes the relationship between large �nite economies and their nonatomic

analogs with three propositions. First, for any positive epsilon, we show that equilibria of

the nonatomic model are epsilon Bayesian-Nash equilibria of su¢ ciently large �nite mech-

anisms. Second, for any positive epsilon, we show that the exact Bayesian-Nash equilibria

of a su¢ ciently large �nite economy are epsilon equilibria of the analogous nonatomic econ-

omy. Finally, we show that the set of equilibrium strategies is upper hemicontinuous in

the number of agents participating in the mechanism. We provide an example that shows

that the equilibrium strategies are not lower hemicontinuous in this limit. Therefore, for

su¢ ciently large �nite mechanisms, the equilibrium predictions of the large �nite economy

are approximately equal to the predictions of the nonatomic model in both the payo¤ and

strategy spaces. Throughout this work we treat the nonatomic models as stylized simpli-

�cations of more realistic large �nite market models. We focus on applications where the

nonatomic approximation allows us to study previously intractable problems.

The �rst novel application we develop is an analysis of large uniform price auction mar-

kets in which bidders may have complementary preferences for multiple homogenous goods.

Uniform price auctions are one of the most common allocation mechanisms in practice with

applications ranging from the sale of US Treasury Bills to BHP Billton diamond auctions.

The game-theoretic equilibria of uniform price auctions predict that ine¢ ciencies can occur

as a result of agents withholding demand in order to reduce the market clearing price (see,

for example, Ausubel and Crampton [11]). The equilibria of large uniform price auctions

have been studied only in the case where agents have declining marginal valuations for

successive units and homogenous goods are auctioned (Swinkels [87]), but the behavior of

large uniform price auctions wherein agents view successive units as complements remains

intractable when approached with game-theoretic techniques. However, the nonatomic

form of the market is a general equilibrium exchange economy, which admits easily charac-

terized equilibria even under nonconvex preferences. Given that equilibria of these general

equilibrium models are e¢ cient and generically possess a unique market clearing price, we

can use our approximation results to show that the equilibria of the large �nite uniform

price auction admit approximately truthful strategies and have vanishing ine¢ ciencies in
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the limit as the number of agents increases to in�nity even in the case where agents treat

successive units as complementary goods or the agents view di¤erent types of goods for

auction as complements.

Although the focus of this work is the theoretical analysis of static markets, our tech-

niques can be modi�ed to allow us to analyze large stochastic games. Ericson and Pakes�

[29] model of strategic interaction within industries with entry and exit is widely utilized

by industrial organization economists for structural estimation. However, a signi�cant

di¢ culty of employing this model for empirical work is that, even under the restriction to

Markov perfect equilibria, the estimation becomes intractable with more than a handful of

�rms. We employ our basic intuition regarding continuity and semi-anonymity to show

that dynamic competitive equilibria of the nonatomic form of the dynamic game approx-

imate Markov perfect equilibria of the large �nite dynamic game. Dynamic competitive

equilibria are often tractable to estimate for economies with a large number of agents. A

particular interest are stationary equilibria, which are dynamic competitive equilibria with

an unchanging state of the economy. Since an agent�s strategy in a stationary equilibrium

is a function only of his type and not of the aggregate distribution of types in the model,

the estimation task escapes the curse of dimensionality even in very large economies. Our

analysis does not rely on the details of the Ericson et al. model and can �nd application

in any dynamic game model that admits stationary equilibria.

The application to dynamic games is of additional interest to economists who are con-

cerned that the dynamic competitive equilibria computed for a nonatomic macroeconomic

model may not faithfully represent the behavior of a large �nite form of the model. By

studying the equilibria of nonatomic models, macroeconomists have in e¤ect been assuming

that the nonatomic equilibria are adequate approximations of game-theoretic equilibria of

large �nite models. Our framework provides macroeconomic theorists with conditions un-

der which this assumption is valid, and these conditions can be veri�ed through inspection

of the model primitives.

1.1. Previous Literature. This is not the �rst work to outline general conditions under
which game-theoretic equilibria approach nonatomic equilibria as the number of agents

increases. However, the prior literature on the relationship between large �nite and

nonatomic games does not emphasize the use of nonatomic games as a framework for

tractably analyzing complex game-theoretic models. One of the barriers to the employ-

ment of this earlier work is that it is not formulated in a fashion that makes it amenable for

application to general models. Our focus on a static mechanism design framework allows

us to formulate and test our conditions in a wide array of applied settings.
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Green [35], and later Sabourian [81], provide su¢ cient conditions for the set of nonatomic

subgame perfect equilibria (SPE) and the SPE of the analogous large �nite dynamic game

to be approximately the same. The Green and Sabourian proof techniques require strin-

gent continuity assumptions that have hampered the application of their analyses, while

our proof technique requires weaker continuity assumptions that arise naturally in most

mechanism design settings. In addition, some of the limit results in these papers re-

quire the convergence of the large �nite games as an assumption, whereas convergence is a

consequence of the economic primitives of our model.

A number of papers have sought to characterize equilibrium existence results for classes

of nonatomic games, often attaining as a corollary that the exact equilibria of the nonatomic

game are approximate equilibria of a large �nite version of the game.2 Much of this work

employs nonstandard extensions to the familiar mathematical structures of real analysis.3

One of the bene�ts of the framework we adopt below is that, while it is su¢ ciently general

to capture many of the market and mechanism models of interest, the proofs are based on

familiar topological notions of continuity.

Al-Najjar ([1], [2]) has studied the relationship between large �nite economies and their

nonatomic equivalents in a framework that is similar to the model discussed in this work.

The principal goal of these works is to clarify di¢ cult technical issues that have plagued

the literature on generic nonatomic games. Unfortunately, the primitives assumed in

these analyses are restricted in such a way that the results cannot be straightforwardly

generalized to many of the models of interest to market designers and applied economists.

Al-Najjar et al. [3] prove that the fraction of players who are ��pivotal has a bound of
the form O

�
1p
N

�
.4 Intuitively, for small �, showing an agent is not ��pivotal is equivalent

to showing that she has a negligible e¤ect on the mechanism outcome. Al-Najjar et al.

provide a limit on the fraction of ��pivotal players, but allow a potentially large number
of players to retain signi�cant strategic choices for large N . The results of Al-Najjar et

al. do not require a continuity condition on the mechanism, which is the force that drives

the uniform limit on the pivotality of the players in our framework. The sharpest results

2Caramona [26] show the equivalence of many of these results and obtains a corollary of this form.
3A summary of results employing the techniques of nonstandard analysis is contained in Khan and Sun
[44].
4This result is similar in spirit to Postlewaite and Schmeidler [72] who study a speci�c market game meant
to capture the price formation process underlying general equilibrium exchange economies. Postlewaite
and Schmeidler show in their setting that for any " > 0 there exists N� such that if N > N� agents play
the market game, in equilibrium at most a fraction " of the agents do not play "-Walrasian responses. In
this context, Walrasian responses are pricetaking responses as played in a general equilibrium exchange
econony. This, of course, does not imply approximate e¢ ciency as the fraction " of nonoptimizers could
control most of the resources and be injured badly in the approximate eqm.
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in Al-Najjar et al. rely on the �niteness of the agents�action space. While a form of their

results applies with in�nite action spaces given a modi�cation of the strategy space, the

severity of the restrictions employed to generate this result is not clear within the context

of mechanisms admitting in�nite action spaces.

Kalai [43] provides a study of semi-anonymous large games in order to show the equilibria

of games with �nite action and type spaces are robust to modi�cations of the game form.5

Kalai�s convergence theorem shows that for any choice of " greater than 0, the equilibria of

the game approaches an ex post "-Nash equilibrium as the number of players increases to

in�nity. Kalai�s proof technique relies crucially on the use of �nite type and action spaces,

whereas our theorem holds for any compact subset of the �nite-dimensional Euclidean

space. Since many mechanism design techniques require connected type spaces, the use of

uncountable type and action spaces is crucial.

Carmona [25] proves a series of results in spirit similar to our Theorem 2. However, as

illustrated by example 3, proving that an exact equilibria of a nonatomic game is an epsilon

equilibrium of a large �nite game does not imply that the continuum game equilibrium is

close, in either utility or strategy space, to the exact equilibria of the large �nite game.

Carmona�s goal is to provide tools to analyze the set of equilibria of the continuum game

by studying equilibria of large �nite approximations and so this concern is not an issue.

Our goal is precisely the opposite, to use the equilibria of simple continuum games as

approximations for the equilibria of intractable game theoretic market models. Theorems

3 and 4, which have no analog in Carmona [25], are the crucial analytical tools we will use

in our applications.

The literature on Walrasian strategic games addresses the question of whether �nite

games taken to represent strategic foundations for Walrasian equilibrium in fact achieve

Walrasian equilibria in the limit as the number of agents increases (Roberts and Postlewaite

[75], Otani and Sicilian [65], Jackson and Manelli [42]). Typically in these games the agents

in the economy each declare a demand schedule, and the market price is de�ned by the

price that clears the market given the aggregate declared demand. Jackson and Manelli

provide the analyses closest in spirit to this paper. Jackson et al. prove that when agents

believe they have little in�uence on the market-clearing price, then the agents�declared

demands must converge to the Walrasian equilibrium demands as the economy grows in

size. Our continuity condition, although based on the economic primitives, is similar to

the equilibrium-dependent small in�uence condition of Jackson and Manelli.

5Given the use of �nite action and type spaces, our continuity condition holds in every game considered in
Kalai [43].
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Mas-Colell and Vives [54] discuss implementation theory for exchange economies with a

continuum of agents. The theoretical techniques employed are similar to ours in that they

utilize approximation theorems to argue that implementations in continuum economies

yield approximate Bayesian-Nash implementations in large �nite economies. Our proof

techniques, although similar to those in their paper, are more readily applied outside of

the context of exchange economies to models such as large auctions for indivisible goods

and matching markets. As noted above, our focus is not implementation per se but the

analysis of existing large markets. Implementation problems similar in spirit to those

tackled by Mas-Colell and Vives could be approached using our framework, although this

issue is left for future work.

A growing literature employs the techniques of game-theoretic analysis to analyze the

performance of large markets (Pesendorfer and Swinkels [69], Cripps and Swinkels [27],

McLean and Postlewaite [51], and Fudenberg et al. [31] amongst many others). Most of

the works in this literature proceed by studying the properties of game-theoretic equilibria

as the number of agents increases to in�nity. A notion of continuity, similar to the one

we employ, underlies these results either explicitly or implicitly. In most of these models,

the weak form of continuity our results require is an innocuous technical restriction and,

if assumed explicitly, the arguments presented in these papers can be constructed from

more general sets of economic primitives using simpler proof techniques. We explicitly

demonstrate how the work of McLean and Postlewaite and Fudenberg et al. �ts within our

framework in Appendix B.

1.2. Outline of Paper. Section 2 develops the principal results relating large �nite mech-
anisms to their nonatomic analogs. Section 3 uses our theorems to analyze the behavior of

uniform price auctions with a large number of agents who are allowed to have complemen-

tary preferences for multiple units of a homogenous good. Section 4 analyzes conditions

under which Markov perfect equilibria of dynamic models can be approximated by station-

ary equilibria. Section 5 concludes the study. All proofs have been relegated to Appendix

A. Proofs omitted for length can be obtained from the author. Additional applications

to McLean and Postlewaite�s [51] model of informational smallness in partial information

general equilibrium settings and the strategic smallness results of Fudenberg et al. [31] are

available from the author.

2. Main Results

In this section we examine the relationship between large �nite mechanisms and their

nonatomic analogs and provide su¢ cient conditions for the equilibria of the nonatomic
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mechanisms to be approximate equilibria of the analogous large �nite mechanisms and

vice versa. In section 2.1 we de�ne the economic primitives used in our mechanism design

models and de�ne the topologies required to prove our results. Section 2.2 presents results

on the existence of Nash equilibria of nonatomic mechanisms in our setting. Section 2.3

describes the theorems we use to relate the equilibria of the large �nite mechanisms and

their nonatomic analogs. Finally, section 2.4 presents results that analyze the e¤ect on

mechanism continuity of adding noise to the outcome function.

2.1. Model Framework. Consider the probability space (
;F ; P ) where 
 denotes a

state space, F a �-algebra of events on 
, and P a probability measure on the space. We

will denote the probability of an event E as P (E) or PrP fEg where the superscript P
refers to the measure determining the probability. The notation specifying the measure

will be omitted when confusion will not result. Let � � Rd denote a type space for the
agents and �(�) the space of measures over �: Each state ! 2 
 de�nes the types for each
of the agents in the large �nite mechanisms we study.6 The type space can denote agent

preferences, private information, or agent beliefs. We will let � 2 � and �� 2 �(�) denote
generic elements from these spaces. Let X be the outcome space for the mechanism. We

will assume that X is a metric space (X ; dX ) and endow X with the topology generated

by dX .7

Assume the agents have symmetric utility functions uN : � ��(�) � X !R in the N
agent mechanism.8 Agent utilities in the limit game will be denoted u : ���(�)�X !R.
We will assume that the agent preferences can be represented in expected utility form when

considering stochastic outcomes, Bayesian-Nash equilibria, or equilibria in mixed strategies.

By including the empirical distribution of agent types in the utility function, we allow for

certain forms of interdependent valuations. For example, common-value utility functions

for auctions can be speci�ed by letting uN (�; ��; x) = E[v(�; x)j��] where the expected
utility is conditional on the (semi-anonymous) information revealed by the other agents�

types in equilibrium. This construction can also be used to formulate expected utilities

6Formally each ! denotes the types of a countable in�nity of agents. This formulation is used so that we
can take limited as N !1.
7The assumption that X is a metric space makes several of the proofs more direct. In most cases of
interest the outcome space is a subset of Rd, d < 1, making the assumption of metric and topology
obvious. However, arguments utilizing the metric dX could be formulated using general topological notions
of continuity if desired.
8The restriction to a common utility function requires that agent heterogeneity be expressable in terms
of the type space. In previous versions of this paper, the requirement of a common utility function was
weakened by placing an equicontinuity restriction on the family of allowable utility functions (as opposed
to continuity on the common utility function) and restricting the proof to revelation mechanisms.
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conditional on forms of uncertainty that are correlated with the types of the other agents.

For example, agent types in a general equilibrium economy can represent informative signals

about the state of aggregate demand, which could impact the expected utility derived by

the agents and �rms in the model.

We will require an assumption to relate preferences in the large �nite game with prefer-

ences in the limit game as N ! 1. In addition, we will require continuity of the utility

functions in the limit. These continuity restrictions follow from the usual assumption of a

continuous preference relation underlying the utility function representation.

Assumption 1. For all (�; ��; x) 2 ���(�)�X , uN (�; ��; x)! u(�; ��; x) uniformly.

We will assume that the agents choose actions from an abstract message spaceM.9 The

outcome of the N -agent mechanism is then a function that maps the agents�messages into

outcomes, gN : M1 �M2 � ::: ! XN, where the subscript on Mi denotes the message

submitted by agent i: In the case of revelation mechanisms, it su¢ ces to let M = �.10

The strategy space, denoted �, of the agents is the set of measurable maps from � into

�(M): When required, we will analyze the metric space (�; d�) where for �; �0 2 �

(2.1) d�(�; �
0) = sup

�2�
j�(�)� �0(�)j

The de�nition of semi-anonymous below captures the notion that the mechanism does

not privilege relationships or interactions between particular agents. Note that we still

allow the type of a given agent to play a role in determining her outcome.

De�nition 1. An N -agent mechanism is semi-anonymous if the outcome function can
be written as g1N (�(M) �M) � g2N (�(M) �M) � ::: where giN : �(M) �M ! X is

individual i�s outcome function. �(M) is taken to be the empirical distribution of messages

declared by the agents.11

While semi-anonymity is not without loss of generality, it allows for models incorporating

di¤erent roles for the agents (ex: buyers and sellers), the possibility of non-participation

(ex: voters and abstainers), and random participation. See Kalai [43] for examples useful

9We will assume the agents all have the same message space for notational ease. This assumption can be
weakened, so long as the mechanism still respects the semi-anonymity property de�ned below.
10As a notational convention, a null outcome ? must be identi�ed to indicate the outcome for agents
N + 1; N + 2;... in the N -agent mechanism. However, the need for this notational convention will not be
eliminated by our assumption of semi-anonymity.
11This notion was �rst used by Green [35]. Some form of anonymity is assumed in most papers studying
large markets, including those of Sabourian [81], Al-Najjar et al [3], and Kalai [43].
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for reformulating traditional mechanisms into this framework. We will assume in this

study that the mechanisms are semi-anonymous unless otherwise noted.

Semi-anonymity must be assumed if agents are to become uniformly strategically small

as N ! 1. The following two examples provide instances where the semi-anonymity

condition is violated.

Example 1. (Monopoly Pricing) Consider a model wherein a monopolist interacts with a
large number of small consumers. The monopolist commits to a price schedule as a func-

tion of realized aggregate demand, and the consumers respond by announcing individual

demand schedules. In this case, the agents will have minimal ability to a¤ect the aggre-

gate demand announcement as N ! 1, which captures the intuition that the consumers
are strategically small in this market. However, since the monopolist�s action enters each

agents� optimal decision problem non-anonymously, the price schedule choice of the mo-

nopolist can in�uence the decisions of every consumer in the market. The monopolist will

obviously not be small, even in the limit as the number of consumers approaches in�nity.

Example 2. (Local Interactions in a Large Economy) Consider a stylized game wherein
the agents are arranged in a circle and labeled with integers in increasing order as one

progresses around the circle. Each agent chooses a mixed strategy �i 2 �(fa; bg): An

agent of type � = 1 earns 1 util for each neighbor�s action she matches and 0 otherwise,

whereas an agent of type � = �1 earns 1 util for each neighbor�s action she mismatches and
0 otherwise. Note that an individual agent�s payo¤ is a¤ected by the actions of a vanishing

fraction of the agents in the economy in the limit. However, individual i�s neighbor i+ 1

employs a strategy that depends on her beliefs about �i+2, agent i+2�s strategy is in�uenced

by her beliefs about �i+3, ad in�nitum. Therefore, the equilibrium outcome for each agent

is a¤ected by the individual choices of all of the other agents in the economy, albeit in an

indirect fashion. Therefore, the actions of the agents in the economy will not become small

in the in�nite limit.

Consider the family of N -agent semi-anonymous mechanisms that we denote O = fgN :
�(M)�M! Xg1n=1. A family of outcome functions is required as we implicitly encode
market feasibility requirements into these mechanism outcome functions. For example,

suppose we consider a N agent auction that allocates M goods. The outcome function gN
then instantiates the desired allocation rule of the M goods amongst the N bidders. If

we consider a larger auction with 2N bidders and M + k goods, the outcome function g2N
then contains the feasibility requirement that up to M + k goods are allocated amongst

the 2N bidders.
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As in the case of the utility functions, we will require a de�nition of the outcome function

in the limit game, which we denote g : �(M) �M ! X . The outcome functions of the

large �nite mechanisms are related to the nonatomic limit mechanism outcome function

by the following assumption.

Assumption 2. For all (m;�M) 2 �(M) �M we have gN (m;�M) ! g (m;�M) uni-

formly.

Where required, we will refer to a family of functions fgm : �(M) ! Xgm2M where

gm(�
M) = g(�M;m): We will typically demand that fgm : �(M)! Xgm2M be uniformly

equicontinuous, which is equivalent to demanding that g be uniformly continuous in �(M)

and that this uniformity hold across M: The stronger assumption that g be uniformly

continuous implies the uniform equicontinuity of fgm : �(M)! Xgm2M:
The proof of the main result requires the use of several topological concepts from the

theory of spaces of measures. The Glivenko-Cantelli lemma implies that given an in�-

nite succession of realizations of independent and identically distributed (i.i.d.) random

variables, the resultant empirical cumulative distribution function (CDF) converges to the

true CDF almost surely in the Kolmogorov metric for distributions over �nite dimensional

Euclidean spaces.12

De�nition 2. Consider two cumulative distribution functions F;G over the state space


 � Rd. The Kolmogorov (Uniform) metric is dK(F;G) = sup
x2


jF (x)�G(x)j

We employ the Glivenko-Cantelli lemma to show that the empirical distribution of i.i.d.

agent types is well behaved in the asymptotic limit as the number of mechanism participants

increases. Therefore, the Kolmogorov metric will be important when analyzing continuity

of mechanism outcomes and agent utility with respect to the distribution of participant

types.

Endow the space �(M) with the topology generated by the Kolmogorov metric and

suppose agent types are drawn in an i.i.d. fashion from measure ��0 over �:
13 Given a

measurable, symmetric strategy for the agents, m : � ! �(M); a distribution of agent

12Please see the appendix for a formal description of the relationship between the Kolmogorov Metric and
the weak-* topology.
13Note that we could allow the agents to be independently but not identically drawn from a �nite set of
di¤ering type spaces f�igmi=1 with the joint type space de�ned as � = �mi=1�i. If we denote the number
of agents drawn from the ith type space as Ni, we require Ni

N
! �i > 0 as N ! 1. This is, from the

perspective of the designers and the agents, a process where the agent types are drawn in a two stage
process: (1) randomly choose the type space and (2) draw the type from the distribution associated with
the chosen type space. Note that step (1) could be done deterministically. For example, the analyst may
be concerned with models wherein the number of buyers and sellers are equal. In this case, buyers and
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types �� 2 �(�) induces a distribution of messages that we denote �M: Formally we

write

(2.2) For all M �M, �M(M) =
Z
�
1fm(�) 2Mg��(d�)

where 1fm(�) 2 Mg is an indicator function for the event that the message declared is
within the set M .14

Our results will use the following notion of an "�equilibrium for mechanisms.

De�nition 3. Given an N -agent mechanism with outcome function g(�(M) �M) and

utility function u : ���(�)�X !R, the strategy m : �! �(M) is an Ex Post "-Nash
Equilibrium at state ! 2 
 if for all agents i; all m0 2 M; and all m� 2supp[m(�i)] we
have

(2.3) u(�i; �
�(!); g(�M(!);m�)) + " � u(�i; ��(!); g(�M(!) +

1

N
[�m0 � �m� ];m0))

where ��(!) is the empirical measure of types and �M(!) is the empirical measure over

the space of message in state ! 2 
, and �m is an atomic measure placing weight 1 on m.

It is obvious from the de�nition that an ex post "�Nash Equilibrium across almost all

states ! 2 
 is also an interim "-Bayesian Nash Nash equilibrium.

2.2. Nonatomic Models. We will de�ne a non-atomic mechanism to describe the limit

equilibrium of interest in our analysis.15

sellers are de�ned as separate type space and enter the economy in (buyer, seller) pairs with types for each
determined independently.
14Note that we are assuming M is a measurable set and that m is a measurable function under ��.
15Several authors have independently developed related notions. For example, Budish�s continuum repli-
cation [24] assumes that each agent is replaced by a unit mass of nonatomic agents with the outcome of
this game de�ning the limit equilibrium. In our case we consider the limiting non-atomic game rather than
a replication of the original preference structure of the mechanisms. Given an K agent preference pro�le
fuigKi=1; we can consider continuum replications of this form by considering the measure that places mass
1
K
on each element of the preference pro�le and take the limit as N ! 1. Therefore, we see that this

replication technique is a special case of the more general framework developed herein.
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De�nition 4. An "�Nash equilibrium message strategy m1 : � ! �(M) of the non-

atomic mechanism de�ned by utility function u : ���(�)�X !R and outcome function
g : �(M)�M! X satis�es

(2.4)

u(�; ��0 ; g(�
M
0 ;m) + " � u(�; ��0 ; g(�M0 ;m0) for all m 2 supp[m1(�)];m0 2M; � 2 �

where �M0 is the distribution of messages induced by the strategy m1 de�ned by

(2.5) For all M �M, �M0 (M) =
Z
�
1fm1(�) 2Mg��0 (d�)

We use the notation supp[��] to refer to the support of a measure ��. Note that devia-

tions from the messaging strategy by a single agent do not a¤ect the aggregate distribution

of messages �M0 : Therefore, in the nonatomic game, the choice of message by a single

agent has no e¤ect on other agents�outcomes.

Denote the extended type space as �E = � � [0; 1] and assume that types are drawn
according to the product measure ��o � �(�) where � refers to the Lebesgue measure on
[0; 1]. Since for E � � we have ��o (E) = ��o � �(E � [0; 1]), the marginal distribution of
types over � is the same in both spaces.16

Theorem 1. Suppose u(�; ��0 ; g(�; �)) : �(M)�M! R is continuous andM is compact.

Then there exists a symmetric pure strategy Nash Equilibrium in the nonatomic version of

the mechanism in the extended type space.

The proof for this theorem relies on Mas-Colell [53], which showed that there exists an

equilibrium distribution over the product space of types and messages such that almost

all type-message pairs represent an optimal response to the equilibrium distribution. Due

to our assumption that type and message spaces are subsets of the �nite dimensional

Euclidean space, given such an equilibrium distribution we can de�ne probability density

functions over the space of messages conditional on each type. We interpret this conditional

distribution as a symmetric mixed strategy. By using the extended type space, we can

then purify the mixed strategy to a symmetric pure strategy in the extended type space.17

This theorem is useful in that it establishes that any nonatomic mechanism in our setting

possesses a Nash equilibrium, which provides assurance that our nonatomic approximation

is not vacuous.

16The extension of the type space to �E is a modeling technique that does not change the empirical content
of the model. In e¤ect, it provides a method for purifying a nonatomic mixed strategy equilibrium.
17The existence of a symmetric pure strategy equilibrium in the original type space has only been proven
for special cases, most notably �nite action spaces (see [53] and [84]).
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2.3. Relation Between Large Finite and Nonatomic Economies. The primary the-
orems of this paper analyze the relationship between the equilibria of the nonatomic mecha-

nism and the equilibria of the large �nite mechanism. The archetypal feature of nonatomic

mechanisms is that agents cannot a¤ect the incentives of the other agents by deviating from

the equilibrium strategy. For large markets, agents have at most a small e¤ect on the em-

pirical CDF of realized actions with this e¤ect vanishing as the market grows. Intuitively,

given that the appropriate notions of continuity hold, the agents�small e¤ect on the em-

pirical CDF of messages will have only a small e¤ect on the outcome for other agents. The

formalization of this argument is the following theorem.

Theorem 2. AssumeM�Rd and �x " > 0 and � 2 [0; 1). For each equilibriumm1 : �!
�(M) of the nonatomic version of the semi-anonymous mechanism g : �(M)�M ! X
there exists an N� such that for all N > N�, m1(�) is with probability 1 � � an ex post
"-Nash equilibrium of the N -agent mechanism gN : �(M)�M! X if

(1) The family fg(m; �)gm2M is uniformly equicontinuous in some relatively open set

�(M) containing �M0 .
18

(2) The family fu(�; �; �)g�2� is uniformly equicontinuous in the space [f�g ��(�) �
X ] \ S where

S � f(�; ��0 ; x) 2 ���(�)�X : g(�M0 ;m
1(�) = xg

is a relatively open set in the product topology on ���(�)�X

The intuition for the proof relies on combining our continuity conditions to show that the

optimization problem facing an agent in a large �nite mechanism is nearly identical to the

decision problem of an agent in a nonatomic mechanism. Since the agent types represent

i.i.d. draws from the true distribution ��0 , we show that in the large �nite economy; the

empirical CDF of agent types almost surely converges to ��0 in the Kolmogorov metric as

N !1. If the agents follow the nonatomic equilibrium strategym1; then the mechanism

outcomes for each type will be inside S for large enough N . Note that S contains the set of
type-distribution-outcome triples realized in the equilibrium of the nonatomic mechanism.

Since the mechanism and utility functions are continuous within S, the problem facing

the agents in the large �nite mechanism will be approximately the same as the one facing

the agents in the nonatomic mechanism.19 Therefore, m1 will be an "-equilibrium of the

18Note that uniform continuity of g : �(M) �M ! X in a relatively open set containing f�M0 g � M
su¢ ces for condition (1). Similarly, uniform continuity of u over a relatively open set containing S su¢ ces
for condition (2).
19Although we derive our result from the model primitives, an alternative proof employs the Glivenko-
Cantelli lemma to show that the problem facing the agents will lie in S with high probability for su¢ ciently
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large �nite mechanism. Since this argument applies almost surely over 
 in the asymptotic

limit, we can choose a large enough N so that this argument holds for a measure 1� � of
the state space for any � less than 1. Therefore, with probability 1� � the "-equilibrium
will be an ex post "�Nash equilibrium.
When the number of agents grows, the individual agents can make sharp predictions

about the distribution of the types participating in the mechanism. Therefore, if the

mechanism is continuous, the agents can ex ante make precise predictions about the e¤ect

of their message on their ex post outcome. The outcome of mechanisms with incomplete

information is thus well approximated by the nonatomic, complete information analogs as

the number of agents approaches in�nity. This implies that the equilibrium will be robust

to a wide variety of assumptions regarding the knowledge structure encapsulated in the

type space utilized in the model.20

The notion of an ex post "-Nash Equilibrium with high probability provides useful

insights into the likely outcome of markets when the number of agents is large, but it is of

interest to link this equilibrium notion to more traditional notions of market equilibrium for

large �nite mechanisms. Fortunately, if we impose an innocuous restriction on the utility

functions we can show that our ex post "-Nash Equilibrium implies the more traditional

notion of a Bayesian Nash Equilibrium.

Corollary 1. Assume the conditions for Theorem 2 hold. Further, assume that the

utility functions of the agents are bounded over the range of the outcome function g :

�(M) �M ! X . Then for any choice of " > 0 and each equilibrium m1 : �E ! M
of the nonatomic version of the mechanism there exists and N� such that for all N > N�,

m1 is an "�Bayesian Nash equilibrium of the N agent version of the mechanism.

The proof for this corollary is straightforward and omitted from this study. For any

choice of � 2 (0; 1] there exists a number of agents N� such that if N > N� participate

in the mechanism, m1 will dictate an action within " of the optima with probability at

least 1� �. Given the boundedness of the agent utility functions over the set of possible
mechanism outcomes, the remaining measure � outcomes will yield an outcome of at most

M <1 less than the optima. Therefore the bene�t of deviating from m1 at the interim

stage is at most " + � � M . Since for N� su¢ ciently large � and " can be chosen to

be arbitrarily small, m1 is an "-Bayesian Nash equilibrium for any choice of " > 0 for

su¢ ciently large, but �nite, choices of N�.

large N� with Berge�s Theorem of the Maximum to establish continuity of the value function within the
neighborhood of S:
20See Bergmann and Morris [19] for details on ex post equilibria and belief hierarchies
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The theorem above separately imposes continuity conditions on the outcome function

g and the utility function u. A weaker continuity condition, but still su¢ cient for the

application of our result, is

Assumption 3. Consider a �xed nonatomic equilibrium strategy m1 and a �xed choice

of a relatively open set S such that

S � f(�; ��0 ;m; �M0 ) 2 ���(�)�M��(M) : m1(�) = mg

Assume that the composite function u(�; ��; g(m1; �M)) mapping from ���(�)�M�
�(M) to R is equicontinuous for the family of sets of the form [f�g � �(�) � fmg �
�(M)] \ S

This alternative assumption is weaker in that it allows discontinuities in the mechanism

where these discontinuities do not a¤ect the utility reaped by any type of agent in the

economy. For most of the analyses presented below, both forms of continuity hold (or fail

to hold) jointly.

The theorem above is stated in terms of ex post "-Nash equilibria. However, it is

straightforward to prove an analogous result for deviations by �xed �nite coalitions of

agents within the economy. In essence, what we will show is that for any coalitions

with K or fewer agents, there is a large enough N that the outcome will be an ex post

K-Coalition-Proof "-Nash equilibrium.

Corollary 2. Consider any �xed �nite set of K agents in the economy denoted with indices

I =fi1; :::; iKg � N. Given the conditions of theorem 2 hold, for any " > 0; � 2 (0; 1] there
is an N � iK that that for all i 2 I the following holds with probability 1� �
u(�i; �

�; g(�M;m(�i)))+" � max
m0=(m0

1;:::;m
0
K)2MK

u(�i; �
�; g(�M+ 1

N

PK
i=1[�m0

i
��m(�i)];m0

i))

Intuitively any �nite set of deviations has a vanishingly small impact on the �(M)

term for large N . This implies that �nite groups of agents cannot collude to alter the

outcome of the mechanism. Corollary 2 can be viewed as a coalition-proofness re�nement

for mechanism stability. For the purposes of market design and real-world mechanism

analysis, collusion by a small group of agents within a large market is often feasible, and

the analyst can draw comfort that under the conditions outlined above she need not worry

about impact of this form of deviation. Our result would not generally hold if a non-

vanishing fraction of the agents collude, but markets are often designed because market-

wide coordination is infeasible.

Theorem 2 shows that the set of nonatomic equilibria is a subset of the set of ex post

"-Pure Strategy Nash equilibria of the large �nite mechanism in the limit as N !1. We
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can show that all of the equilibria of the large �nite mechanism have nonatomic analogs,

in the sense that equilibria of the large �nite mechanism are epsilon equilibria of the

corresponding nonatomic mechanism.

Theorem 3. Assume M�Rd and �x " > 0. There exists an N� such that for all

N > N� and for any symmetric Bayesian Nash equilibrium mN : � ! �(M) of the N

agent mechanism, the �nite agent strategy mN is an "-Nash equilibrium of the nonatomic

mechanism if

(1) The family fg(m; �)gm2M is uniformly equicontinuous in some relatively open set

�(M) containing �N1 where �N1(M) =
R
� Prfm

N (�) 2Mg��0 (d�):
(2) The family fu(�; �; �)g�2� is uniformly equicontinuous and bounded in the space

[f�g��(�)�X ] \ S where S � f(�; ��0 ; x) 2 ���(�)�X : g(�M1 ;m
N (�E)) = xg

is a relatively open set in the product topology on ���(�)�X

The principle di¢ culty in proving this theorem is to show that as N goes to in�nity, the

optimization problem facing the agents is dominated by the high probability event that

the distribution of messages received by the mechanism is close to �N1 in the Kolmogorov

metric. Corollary 5 demonstrates a uniform bound across measures on the probability that

the empirical CDF will be more than � in distance from ��0 in the Kolmogorov metric,

which we denote as event E, and that this probability approaches 0 as N !1. Since the
utility functions are bounded, the di¤erence in utility between the best and worst message

contingent on E occurring is bounded. For N su¢ ciently large, the probability of E can

be made arbitrarily small. Therefore, for any choice of � > 0, the incentive for an agent

to consider states of the world wherein the empirical and true measure di¤er by more than

� vanishes as N !1.
Since the mechanism and utility function are continuous in the Kolmogorov metric,

if the empirical CDF and ��0 are su¢ ciently close (the event 
nE) and N su¢ ciently

large, then the agents�optimization problem in the large �nite mechanism is approximately

the same as that facing the agents in the nonatomic mechanism. This implies that for

su¢ ciently large N , a solution to the problem facing agents in the large �nite mechanism

will approximately solve the optimization problem for agents in the nonatomic mechanism

when all other nonatomic agents follow mN . Therefore, mN will be an "-Nash equilibrium

of the nonatomic mechanism.

Let the set of exact Bayesian-Nash equilibria of the N agent game be denoted by the

correspondence E : N � �. Let E1 = Lim
N!1

E(N) and denote the set of equilibria of
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the nonatomic analog as ENA. We can use Theorem 3 to prove the following relation-

ship between the exact equilibria of the large �nite model and the exact equilibria of the

nonatomic model. Note that unlike the results above, Theorem 4 implies convergence

of the equilibria in the strategy space, whereas Theorems 2 and 3 suggest convergence of

equilibria only in utility space.21

Theorem 4. Assume M�Rd. The correspondence E is upper hemicontinuous with

Lim
N!1

E(N) = E1 � ENAif

(1) The family fg(m; �)gm2M is uniformly equicontinuous over �(M).

(2) The family fu(�; �; �)g�2� is uniformly equicontinuous over f�g ��(�)�X :
(3) u(�; ��0 ; g(�; �)) is upper semi-continuous in �(M) �M where �(M) is endowed

with the weak-* topology

The above theorem implies that any convergent sequence of exact equilibria of the large

�nite game converges to some equilibrium of the nonatomic model. Suppose such a conver-

gent sequence did not have a limit point in ENA. This would imply that if the agents in

the nonatomic game played the limit strategy, some positive measure of these agents would

have a pro�table deviation. The statement of Theorem 3 strongly hints at a contradiction,

and our proof goes through the formal steps of showing this to be the case.22

In order to make our intuition precise, we need to strengthen our continuity assumptions.

Consider an arbitrary exact equilibrium of the N agent game, mN : �! �(M). We then

know that if all of the agents followmN in the continuum game, we will realize a distribution

(2.6) �N1(M) =

Z
�
PrfmN (�) 2Mg��0 (d�)

21The interpretation of Theorems 2 and 3 as convergence in utility space is merely suggestive. For example,
we proved that an equilibrium of the nonatomic game was an "-equilibrium of the large �nite game. This
suggests that the nonatomic game equilibrium is an "approximation" of some large �nite equilibrium in
utility space. However, there are examples of games whose exact equilibria of generic games can yield payo¤s
that are non-trivially di¤erent than any "-equilibrium for any " > 0 (for an early example, see Roberts and
Postlewaite [75]). Theorem 4 shows that such an example cannot be generated if our semianonymity and
our continuity restrictions hold.
22We could weaken the conditions of our theorems to the following, although we choose not to do so for
expositional ease:
Suppose the following two conditions hold for all mN 2 E(N) for all N 2 N:

(1) The family of functions fgm : �(M) ! Xgm2M is uniformly equicontinuous in some relatively
open set �(M) containing �N1 where �N1(M) =

R
�
PrfmN (�) 2Mg��0 (d�):

(2) The family of functions fu� : �(�)�X !Rg�2� is uniformly equicontinuous and bounded in the
space [f�g ��(�) � X ] \ S where S � f(�; ��0 ; x) 2 � ��(�) � X : g(�M1 ;m

N (�E)) = xg is a
relatively open set in the product topology on ���(�)�X
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Unfortunately, even if there is some equilibrium of the nonatomic game, m1 : �! �(M);

such that

(2.7) sup
�2�

jm1(�)�mN (�)j < �

it is not the case that the distribution

(2.8) �M0 (M) =

Z
�
1fm1(�) 2Mg��0 (d�)

is close to �N1 in the Kolmogorov topology, although the two measures are close in the weak-

* topology. The Kolmogorov topology registers small changes when individuals deviate in

the nonatomic game, but a large change if a positive measure of agents deviates even a small

amount. The weak-* topology is continuous to this form of change in measure, and hence

we require this stronger notion of continuity in our proof. We discuss techniques su¢ cient

for conditions (1) and (2) of Theorem 4 to be su¢ cient for condition (3) in Appendix B

from the author.

Two notes are warranted at this point, our notion of approximate equilibrium in the

nonatomic limit game requires that the agents uniformly choose approximately optimal

actions. If we had weakened the notion of "-Nash equilibrium to mandate a measure

1 � " og agents choose actions within " of the optimal choice, we would have recovered
upper hemicontinuity of E , but only if � is endowed with the L0 norm. Our stronger

notion of approximate nonatomic equilibria allows us to prove the stronger notion of upper

hemicontinuity above.

Second, our continuity conditions are stronger than required for our proof techniques.

Much as in Theorem 3;we could weaken our continuity conditions to hold only in a small

set of the message distributions and outcomes induced by E1. However, without explicitly
computing the equilibria of the large �nite game and deriving the limit set E1, we cannot
be assured where continuity of the nonatomic analog is required. As computation of

large �nite equilibria is precisely the step that we are trying to avoid using our analysis

framework, it is di¢ cult in practice to weaken the continuity conditions unless subsets

of the strategy space can be ruled out of consideration as equilibria prior to equilbirium

computation.23

We can interpret Theorem 4 explicitly in terms of the metric convergence of sequences

of exact equilibria of the large �nite games to equilibria of the nonatomic games. For

the notion of distance in the message space to have meaning, we will assume that the

23The possibility of ruling out strategies prior to computing an equilibrium is suggestive of the exclusion
of non-rationalizable strategies.
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message space,M, is a subset of a metric space with metric dM :M�M! R+. Given
the metric space (M; dM), denote the associated metrization of the weak-* topology over

�(M), known as the Lévy-Prokhorov metric, as (�(M); dLP ). As the following corollary

follows directly from Theorem 4; we omit the proof.

Corollary 3. AssumeM�Rd and �x � > 0. There exists an N� such that for all N > N�

and for any symmetric Bayesian Nash equilibrium mN : � ! �(M) of the N agent

mechanism, there exists an equilibrium of the nonatomic mechanism m1 : � ! �(M)

such that for all � 2 �; dLP (mN (�);m1(�)) < � if

(1) The family fg(m; �)gm2M is uniformly equicontinuous

(2) Assume the family of functions fu(�; �; �)g�2� is uniformly equicontinuous

Theorem 5. (1) u(�; ��0 ; g(�; �)) is upper semi-continuous in �(M)�M where �(M)

is endowed with the weak-* topology

The convergence rate result of theorem 1424 t implies that the "-best response results

of theorems 2 and 3 can be chosen so that " = O( 1p
N
). Unfortunately, similar asymp-

totic convergence rates cannot be provided for the strategy space approximation result of

theorem 4 without additional assumption on the agents�objective function. One possible

assumption is:

Assumption 4. Consider any symmetric Bayesian Nash equilibrium mN : �! �(M) of

the N agent mechanism. Let

(2.9) S(�) = argmax
m2M

u(�i; �
�
1; g(�

N
1;m))

where

(2.10) �N1(M) =

Z
�
PrfmN (�) 2Mg��0 (d�):

Let �(m; �) = inf
m02S(�)

d(m;m0). Suppose that there exists a function b : R+ ! R+ such

that for some � > 0; if m� 2 S(�) and �(m; �) < �; then

(2.11) ju(�i; ��1; g(�N1;m))� u(�i; ��1; g(�N1;m�))j > b(�(m; �))

Further assume that b is invertible in a neighborhood of 0.

The assumption above mandates that as we consider messages farther and farther outside

of the set of optimal messages, the utility loss of these suboptimal messages must grow at

24Please see the Appendix for a formal statement and proof of the convergence rate result.



THE SIMPLE BEHAVIOR OF LARGE MECHANISMS 21

a rate of at least b(�). If we combine our assumptions on b(�) with the convergence rate
result of theorem 14,25 then it must be the case that theorem 4 can be strengthened to the

claim that � = O(b�1( 1p
N
)):

Ideally, we would like to prove that the limit of the sets of equilibria of the large �nite

mechanisms is lower hemicontinuous as N goes to in�nity. However, as the following

example shows, this is not the case for arbitrary mechanisms.

Example 3. Consider a mechanism with outcome function g(��;m) = E�
�
m and message

space M = [0; 1]. The agents each name a number in [0; 1] and the mechanism pays

each agent the average of the agents� announcements. Assume the agents have utility

functions that are independent of type and increasing in monetary payments. Obviously for

any �nite mechanism the unique equilibrium is for each agent to announce the message

m = 1 and receive a payment of 1. However, any messaging strategy is an equilibrium of

the nonatomic mechanism as the individual agents cannot use their messages to a¤ect the

average computed by the mechanism. This does not disprove Theorem 3 since in the �nite

mechanism with N > 1
" agents, any messaging strategy is an "-equilibrium.

The proof technique we used to show that all of the equilibria of the �nite mechanism

converge in strategy space to equilibria of the nonatomic mechanism cannot be used to

prove the converse since Anderson�s almost implies near theorem needs to be applied in-

dependently to each �nite mechanism as N ! 1. The example above reveals that for

arbitrary mechanisms, we cannot choose an " > 0 uniformly across N so that the equilibria

of the �nite mechanisms are within � > 0 of the nonatomic equilibria for arbitrary choices

of �.

In order to make predictions about the equilibrium strategies of the �nite mechanism

using the nonatomic equilibria as an approximation, it is crucial that the set of equilibria

of the nonatomic mechanism be small relative to the size of the strategy space or that the

equilibrium outcome of interest be �xed across the set of nonatomic equilibria. In the

example illustrated above the set of nonatomic equilibria is equal to the entire strategy

space, so no conclusions about the behavior of the agents in the exact equilibrium of the

�nite mechanism can be made using our analysis framework

2.4. Mechanism Noise. The continuity of the mechanism g : �(M)�M! X is crucial

for the equilibria of the nonatomic mechanism to be approximate equilibria of the large

�nite mechanism (and vice versa). Several prior works have suggested that adding noise to

a mechanism�s outcome function (for example Swinkels [87], Levine et al. [49]) can restore

25Please see the Appendix for a formal statement and proof of the convergence rate result.
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continuity to an otherwise discontinuous mechanism. As we will see in our uniform price

auction application in Section 5, adding an arbitrarily small amount noise to the outcome

of an auction can restore continuity when the deterministic auction is discontinuous. We

will analyze model alterations of this form and provide su¢ cient conditions for noise to

render a mechanism continuous.

AssumeM�Rd is a compact set for d <1. EndowM with the usual topology, �(M)

with the weak-* topology, and �(M)�M with the corresponding product topology. Let

X be endowed with an analytically convenient topology. Consider a family of mechanisms

G =fg� : �(M)�M! Xg�2� where � can be described as a probability space (�;Q; Q).
Then one can de�ne the random variable g : � ��(M) �M ! X where g(�; �M;m) =

g�(�
M;m) is assumed to be measurable under the product measure space (
 � �;F �

Q; P � Q). This can be interpreted as a draw from 
 at the interim stage to determine

the agent�s types, followed by a draw from � at the ex post stage to determine which

element of G generates the agents�outcomes. Therefore, the agents face a mechanism of

the form g : �(M) �M ! �(X ) at the interim stage, where �(X ) re�ects the interim
uncertainty as to which mechanism will be realized ex post. We endow �(X ) with the
weak-* topology.

A common problem facing a mechanism designer is a family of mechanisms G =fg� :
�(M)�M! Xg�2� wherein each element g� 2 G is discontinuous in such a fashion that
makes application of the theorems above di¢ cult. As we will see in section 3, a nonatomic,

multi-unit auction mechanism with a deterministic supply will have a discontinuity for

agent valuation declarations on the margin between provision and non-provision of the

good. However, the location of this discontinuity is di¤erent for each value of the supply.

This suggests that if the supply is random, the discontinuity in the individual mechanisms

g� will be smoothed by the randomization at the interim stage. Formally we de�ne a

family G of auctions with di¤ering supplies, and the supply level (element of G) used to
determine allocations is determined ex post and is unknown at the interim stage when

agents declare bids.

In order for randomizing over discontinuous mechanisms to yield a stochastic mechanism

continuous at a message distribution �M0 , we will require that the discontinuities not be

concentrated in the neighborhood system of �M0 :

De�nition 5. Consider the neighborhood system of �M0 generated by dK , denoted N (�M0 ).
Consider an arbitrary m 2 M and an arbitrary sequence fUng1n=1;Un2 N (�M0 ) such that
i > j implies Ui � Uj : The discontinuities of G =fg� : �(M)�M! Xg�2� are di¤use
around �M0 if for any m 2 M the elements of the sequence qn = Q(f� 2 � : g�(�;m)
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is discontinuous over Ung) are well de�ned and qn ! 0 as n ! 1. Further, for the

measure 1 � qn of members of G that are continuous over Un, we will assume these are
equicontinuous over Un.

It is clear from the de�nition of the sequence fUng1n=1 that the values of qn must be
decreasing as n ! 1. The content in the de�nition lies in the assumption that qn
approaches 0 as n diverges to in�nity and that for those elements of G that are continuous
over Un we can assume equicontinuity rather than simple continuity. This implies that

for any " > 0 we can choose a neighborhood of �M0 such that all but but a measure " of

the members of G are continuous in the neighborhood. Assuming the discontinuities are

bounded, then the impact these discontinuous mechanisms have on the continuity of the

stochastic mechanism will fade as "! 0. This intuition underlies the following theorem.26

Theorem 6. Suppose the outcome set X is bounded. Consider a family of mechanism

G =fg� : �(M) �M ! Xg�2� where the discontinuities of G are di¤use for all �M 2
�(M). Then the stochastic mechanism g : �(M)�M! �(X ) is continuous in �(M)

for �xed m 2M at the interim stage.

Two technical issues about our formulation of smoothing mechanisms through added

noise require discussion. First, it is important to note that the randomization is over

an aggregate parameter. A unique mechanism outcome function is used at the ex post

stage to generate outcomes for all of the agents. This contrasts sharply with the case of

independent, identically distributed shocks observed privately by each agent. To see this,

note that this private information can be encoded as an element of each agent�s privately

known type. In the limit as N approaches in�nity, this type distribution will approach

��o , implying that the idiosyncratic noise vanishes in the aggregate. Second, we should

note that the uncertainty is resolved at the ex post stage after all of the agents have

issued their message declarations. If the uncertainty were resolved at the interim stage,

the agents could condition their messages on the particular discontinuous mechanism they

faced, which would render our theorems inapplicable to the economy.

3. Large Auctions with Complementary Preferences

Since the resurgence of interest in large scale auctions, abetted signi�cantly by the 1994

Federal Communications Commission Spectrum Auctions, the vast majority of allocation

mechanisms implemented have been uniform price auctions. It is well known that uniform

26A trivial corollary of this theorem is that randomizing over a family of continuous mechanisms preserves
the continuity of the stochastic mechanism.
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price auctions where agents have preferences for multiple goods are not generically e¢ cient

since agents have an incentive to withhold their demand for marginal units in order to drive

down the price paid for the inframarginal units received (Back and Zender [13], Ausubel

and Crampton [11]). Despite these disappointing theoretical properties, uniform price

auctions have being widely implemented in both dynamic and static forms to allocate

goods ranging from United States Treasury Bills to electricity provision rights.

Prior studies in the uniform price auction literature (for example Swinkels [87]) have

employed restrictions on the model, such as insisting the agents are risk neutral and have

decreasing marginal valuations for the goods, in order to apply game-theoretic analysis

techniques to discover the equilibrium strategies and outcomes in the limit as N !1. In

the context of electricity auctions, it is clear that the right to provide successive units of

power to an electricity good could be complements to each other. Consider an electricity

generator with a large �xed but low marginal cost of production. The average cost for the

generator will be declining as the units provided increases, which means the pro�t function

would have the complements property with respect to the number of units demanded. As

such, having a tractable model of uniform price auctions with complementary preferences

is a crucial application of auction theory that has, to this point, resisted analysis.

In addition, we can assume that the agent valuations are a¢ liated with a common

value component. This is crucial if we want to apply our conclusions to securities markets,

goods which have an obvious and crucial common value component in terms of the stream

of payouts the holders of the security receive. By including a common valuecomponent

to bidder valuations, we show that information aggregation occurs and the common value

component is perfectly revealed in the limit as N !1. Therefore, our analysis can be seen
as a contribution to the literature on game theoretic foundation for rational expectations

equilibria. Although the question had been previously answered for single and double

auction models wherein the bidders have unit demand (Reny and Perry [74]), the extension

to the multi-unit demand case remained an open question due to the di¢ culty of analyzing

the large multi-unit demand auctions.

Our approximation techniques let us use analytically tractable, incentive-free general

equilibrium economies to analyze the complex, strategic models of large uniform price

auction markets. Intuition suggests that a large uniform price auction would behave

similarly to a general equilibrium model with the auction serving as a price discovery and

information aggregation mechanism. We will use our nonatomic approximation techniques

to show that under general preference distributions, the intuitive relationship between

large uniform price auctions and general equilibrium models is valid. Our approximation
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theorems implies that the equilibrium bids in the uniform price auction are approximately

turhtful, which immediately implies that the auction outcomes are approximately e¢ cient

for large N . Further, information about the common value component of the bidder

valuations aggregates as N !1.
The literature on general equilibrium economies shows that under general preference

structures, equilibrium exists and is e¢ cient (Aumann [8]) and that, when agents truthfully

reveal their preferences in a nonstrategic fashion, as N approaches in�nity large market

equilibria converge to the equilibria of the nonatomic limit model under relatively weak

technical requirements (Hildenbrand [39]). In addition to illustrating the power of our

analysis framework, we provide an intuitive linkage between the nonstrategic models in

the spirit of Aumann and Hildenbrand and the game-theoretic literature represented by

Swinkel�s study.

3.1. Model. We will consider a uniform price auction setting wherein the agents have

quasi-linear preferences for up to K < 1 homogeneous items. Agent types � 2 � =

[0; v]K represent signals that are conditionally i.i.d. given an aggregate random variable

! 2 
 � R.27 We will denote the conditional distribution of agent types as ��0 (!) and

assume ��0 (!) is absolutely continuous with respect to the Lebesgue measure:28 Agent

utilities in the limit are assumed to be quasilinear in price. We require that the agent

utility respond to their own type even if the state ! is known. The assumption that

agent utilities are partially private allows us to avoid the Grossman-Stigliz paradox when

computing the equilibrium of the nonatomic limit game.

Assumption 5. u(�; !; x) is strictly increasing and continuous in � holding ! �xed

The value of ! and ��0 (!) is only revealed to the agents after they receive their alloca-

tions. In the nonatomic and large �nite games, the agents are required to infer the value

of ! from their own type and the equilibrium market price. As we will see below, the

nonatomic game equilibrium is a rational expectations equilibrium (REE) in an exchange

economy setting. However, since the good is divisible only with respect to aggregate de-

mand�s response to price changes, the utility functions are not di¤erentiable with respect to

outcomes and most of the prior research on REEs in this setting is not of use in analyzing

our model. However, we will use analytical techniques common to the study of auctions

to show that the REE of the nonatomic game is well behaved.

27We place an upper bound on valuations to rule out economies with in�nite prices in equilibrium.
28The absolute continuity condition is required only to show that the large �nite game is informationally
("; �)-e¢ cient.
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In order to prove that the nonatomic limit game admits a unique full revelation rational

expectations equilibrium, we will require that the agent bids be monotone in their type.

For this we require the following

Assumption 6. [Common Value Case] u(�; !; x) is strictly supermodular in (�; !; x)

Assumption 7. [Private Value Case] u(�; !; x) is strictly supermodular in (�; x) and for
all !; !0 we have u(�; !; x) = u(�; !0; x)

Assumption 8. f(�j!) is strictly log supermodular in (�; !)

In lemma 2, we see that these properties are enough to ensure that agent bids must be

increasing in their own type. This implies that the nonatomic equilibrium will be fully

revealing and hence e¢ cient. In the case of purely private values, we require only that

assumption 6 and that ! > !0 implies ��0 (!) weakly �rst order stochastically dominates

��0 (!
0). Our stronger assumptions are required to deal with the joint informativeness of

price and type in the common value setting.

We interpret �i as representing an agent�s signal about the his marginal valuation for

the ith unit he (may) receive, which is composed partly of a common value component.

We do not insist that these marginal valuations be decreasing and explicitly allow for the

case of complementarities between successive units. An example of such a valuation vector

in a private values setting would be (in the K = 2 case), � = (0; 1), wherein the agent

values only pairs of the good. By way of contrast, Swinkels [87] demands the agents to

have decreasing, private marginal valuations for successive units. Our extension to the

partially common value case is important for auctions of securities, items that have an

essential common value component.

We de�neM as the set of monotone decreasing, upper hemicontinuous29 demand sched-

ules for prices within [0; v]. We will use the notation q : [0; v] ! f0; :::;Kg to denote the
demand at price p given demand schedule q 2 M. Given a strategy m : � !M, de�ne

the declared demand of an agent of type � as m(p; �): Note that the space of demand

schedules admits a �nite dimensional representation as an demand schedule is equivalent

to the (�nite) set of price discontinuities where an agent claims indi¤erence between re-

ceiving k 2 f1; ::;Kg and l < k units of the good. Given an agent�s type �, we can de�ne
the true interim demand of the agent in the nonatomic game

(3.1) D�(p) = argmax
x2f0;1;:::;Kg

E[u(�; !; x)j�; p]� p � x

29Upper hemicontinuity is important in our proof to identify points of indi¤erence. This condition is trivial
if agent preferences are continuous in price.
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where p represents the uniform price for the good and the expectation is taken over ex post

utility given realized equilibrium market price, p, and the agent�s own private valuation

re�ected in the type �: The dependence of demand schedule on market price allows the

agents to incorporate whatever information is contained in such prices into their utility

calculation. As we will see, the price is fully revealing and hence D�(p) is the result of a

rational expectations equilibrium calculation rather than an averaging over risk per se.

A total of M units are auctioned o¤ in the N agent auction and assume that M
N !

r 2 (0;K) as N ! 1. Given a declared demand schedule distribution �M, the auction

makes an assignment to an agent who declared q 2 M equal to x(�M; q) 2 f0; :::;Kg
at a price of p(�M) 2 [0; v] for a total payment of x(�M; q) � p(�M). As we will be

focusing on equilibria and "-equilibria involving truthful declaration, we will not specify

the tie breaking system except to note that ties will have negligible impact on e¢ ciency or

interim incentives as a realization of types in which two agents have identical valuations is

a probability zero event. Let p(�M; r) denote the market clearing price as a function of

both the distribution of demand schedules declared to the mechanism, �M, and the supply

of the goods, r 2 (0;K), available for allocation.
For the large �nite auction we will use the following conditions to de�ne the outcome

(Individual Demand) x(�M; q; r) 2 Lim
�!0

q(p(�M; r) + �)

p(�M; r) = sup
p2[0;v]

p such that
Z
q(p) � �M(dq) > M

N
and

(Market Clearing)

for all � > 0,
Z
q(p+ �) � �M(dq) � M

N
g

These conditions imply that the highest losing bid is accepted as the market clearing price,

and every bidder receives the number of units demanded at this price with the exception

of the highest losing bidder, for whom

(3.2) Lim
�!0

q(p(�M; r) + �) > q(p(�M; r))

The highest losing bidder declared a demand schedule at which he was indi¤erent between

two bundles at p(�M; r), and his indi¤erence is broken in favor of receiving a smaller bundle

of goods.

Note that we allow the auctioneer to retain a fraction of the goods at auction in the case

where the market clearing condition necessitates a strict inequality. Since we will proceed

to show that the nonatomic mechanism outcomes approximate the large �nite mechanism
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predictions, a vanishing fraction of the goods for auction will be retained by the auctioneer

in the limit as the number of agents diverges to in�nity. In the nonatomic case we will

use a Walrasian equilibrium concept

(Individual Demand) x(�M; q; r) 2 Lim
�!0

q(p(�M; r) + �)

p(�M; r) = sup
p2[0;v]

p such that
Z
q(p) � �M(dq) > r and(Market Clearing)

for all � > 0,
Z
q(p+ �) � �M(dq) � r g

where r is taken to be the quantity of goods, treated as divisible in the nonatomic context,

to be distributed amongst the agents. The individual demand condition in the Walrasian

case is considered a tie breaking rule for the case where an atom of agents is indi¤erent

between two (or more) bundles at the market clearing price p(�M; r). As we will see,

the equilibria of the nonatomic model are outcome equivalent to truth declaration in a

Walrasian exchange economy, if the distribution of valuations ��0 is atomless, then for

almost all agents tiebreaking is not an issue.

We will propose two notions of approximate e¢ ciency dilineated by the timing of their

execution. The stronger notion of e¢ ciency is evaluated the ex post stage.

De�nition 6. Consider an N -agent auction with supplyM . The set of feasible allocations
is then the set

(3.3) J = fx : f1; :::; Ng ! f1; :::;Kg such that
NX
i=1

x(i) �Mg

An equilibrium outcome of the N�agent game, x : �(M)�M! f0; :::;Kg with message
strategy mN ; is ex post "-e¢ cient if

(3.4)
Z
uN (�; !; x(�

M;mN (�))) � ��(d�) + " � max
x�2J

1

N

NX
i=1

uN (�i; !; x
�(i))

The ex post e¢ ciency crtieria is very strong in the context of our model since the agents

in the nonatomic game cannot condition their messages on ! except indirectly through

price. As we will see below, market price alone is not su¢ cient to identify ! at the ex

post stage of our nonatomic game, which suggests that a weaker notion of approximate

e¢ ciency will be required.
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De�nition 7. Consider an N -agent auction with supplyM . The set of feasible allocations
is then the set

(3.5) J = fx : f1; :::; Ng ! f1; :::;Kg such that
NX
i=1

x(i) �Mg

Consider the sigma algebra P over the space (
 � (0;K) � �).30 An equilibrium out-

come of the N�agent game, x : �(M) �M ! f0; :::;Kg with message strategy mN ; is

informationally ("; �)-e¢ cient with respect to P if

(3.6) E
�Z

uN (�; !; x(�
M;mN (�))) � ��(d�)jP

�
+ " � max

x�2J
E

"
1

N

NX
i=1

uN (�i; !; x
�(i))jP

#
with probability at least 1� �

The notion of information e¢ ciency requires that the allocation be optimal conditional

on some restriction on the agents information. In addition, we demand that the agent

information partition lead to near e¢ ciency only probabilistically. This allows for the

possibility that the agents inferences based on P could lead to suboptimal allocations

with some low, but positive probability.31 We will consider whether our common value

mechanisms are e¢ cient relative to the weaker standard of informally e¢ ciency with respect

to the information revealed by the equilibrium price function and the agents�own types.

In the private value context, we will �nd that our uniform price auction will also be

approximately ex post e¢ cient.

We will analyze this mechanism by studying the nonatomic mechanism equilibria and

then use our theorems to show that the large �nite auction will yield approximately identical

outcomes to the nonatomix analog. To employ our theorems, we will need to prove that the

uniform price auction mechanism is continuous. When the supply r is common knowledge

in the nonatomic model, the uniform price auction will have a discontinuity for an agent

that declares that she is indi¤erent between receiving and not receiving the good at the

commonly known market clearing price. To smooth this discontinuity, we will assume that

there is aggregate uncertainty on the supply side that is not resolved until after the agents

have submitted their valuations to the auction. We capture this uncertainty by letting r

be a random variable with distribution �r with support over some open subset of (0;K):

30We interpret this as the space of state of the world ! 2 
, per capita supply realizations r 2 (0;K), and
agent type � 2 �:
31For example, in a large market it is possible that a distribution of types is realized that, in an intuitive
sense, does not re�ect the underlying common value. In this low probability event, it is unlikely price
(or the agent inferences from price) will accurately re�ect the state of the world and the good could be
misallocated.
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The noise in our model of the uniform price auction can be economically interpreted in

a variety of ways. For example, the noise could be the result of noise traders who su¤er

aggregate shocks to demand. Oil lease auctions and Federal Reserve security auctions

often have reserve prices that are not disclosed to bidders. Under the assumption that

these reserve prices are in�uenced by exogenous shocks at the ex post stage, then supply

is random as seen by bidders at the interim stage. The natural interpretation of the noise

our continuity proof requires, as well as whether noise in aggregate demand or aggregate

supply is more natural, will have to be decided on an application by application basis.

The mechanism allocation function is then rede�ned as x : �(M)�M! �(f0; :::;Kg)
and the price function becomes p : �(M) ! �([0; v]). Given a realization of r 2 (0;K)
drawn after the agents submit their valuations, the allocation and price functions are

determined as per the Individual Demand and Market Clearing conditions. To agents

submitting demand schedules at the interim stage, the market clearing process based on

the random supply variable r is perceived as a lottery over allocations and prices. We

will use the weak-* topology over the spaces �(f0; :::;Kg) and �([0; v]). We require that
our agent utilities be continuous in the weak-* topology over lotteries in �(f0; :::;Kg) and
�([0; v]).

As a preliminary step in the analysis, we note that the nonatomic model assumes supply,

r, is a continuous variable whereas it is by de�nition discrete in each of the �nite models.

In order to handle this changing feasibility constraint as N approaches in�nity, we de�ne a

family of �nite mechanisms O = f(xN ; pN ) : �(M)�M! �(f0; :::;Kg)��([0; v])g1N=1
where outcomes for mechanism (xN ; pN ) are de�ned by the relevant �nite market clearing

condition with random supply MN . To employ our theorems, we must show pointwise

convergence of the sequence f(xN ; pN )g1N=1 to the nonatomic outcome function. Therefore,
we must assume that the random process MN

N converges to r. In this context, it is su¢ cient

that MN
N converge to r in the Kolmogorov metric, although it is trivial to choose MN so

that convergence is almost sure in the strong topology. For example, we could choose

MN = round[N � r] where round[�] generates the nearest integer to N � r.
Our �rst task is to show that the agent preferences generate aggregate behavior in the

nonatomic model that is well behaved, in the sense that mechanism outcomes are well de-

�ned by the Individual Demand and Market Clearing conditions. However, the nonatomic

analog is simply a general equilibrium exchange economy consisting of an auctioneer and

the measure 1 continuum of bidders. There are 2 goods in the economy, the good for

auction and money serving as a numeraire good. From Aumann [7] we can be assured

that equilibrium is well de�ned in this game.
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3.2. Applying our Framework. In order to use our theorem, we need to �nd the equi-
librium of the nonatomic version of the mechanism. Given that price cannot be a¤ected

by the declarations of individual agents in the nonatomic mechanism and since agents re-

ceive an optimal allocation given their declared demand schedules and the market clearing

price, it is obvious that truthfully announcing demand schedules is an optimal message for

the agents. Any other message that has an e¤ect on the outcome will yield a subopti-

mal allocation for the deviating agent at the equilibrium price, which the agents treat as

exogenous in the nonatomic model. In all equilibria agents declare a demand schedule

that is outcome equivalent to a truthful declaration, from Aumann [10] we know that the

equilibrium of the nonatomic mechanism exists and is e¢ cient for each realization of r even

in the case where agents have nonconvex preferences over the quantity of the good they

are allocated.32

To show that the nonatomic equilibrium outcomes identi�ed above approximate the

equilibria of the large �nite auctions, we need to show that the mechanism is continuous

in the relevant topologies. As a �rst step, we will assume that the agents only employ

strategies that are rationalizable. This implies that if the agent�s true interim demand is

(3.7) D�(p) = argmax
x2f0;1;:::;Kg

E[u(�; !; x)j�; p]� p � x

then the agent will declare a demand schedule that is weakly smaller than D�(p). We refer

to this as our Rationalizability Assumption. This implies that each agent gets weakly
fewer units than she desires at any price p given her true interim utility.

Lemma 1. If the Rationalizability Assumption holds, then

� p(�) is uniformly continuous and fx(�; q)gq2M is uniformly equicontinuous:

�

(3.8) E[u(�; !; x(�M;m))j�; p]� p(�M;m) � x

is upper semicontinuous in �(M) �M where �(M) is endowed with the weak-*

topology andM with the Euclidean norm.

To gain some intuition for a this theorem, consider a distribution of demand declarations

�M. The market clearing price is set by agents on the margin who claim to be indi¤erent

between either receiving k or l > k units of the good at the market clearing price. In

the proof of lemma 1, we show that the price determination conventions of the nonatomic

32The agents have a strict incentive to declare truthfully for all prices in the support of p(�0). The
incentives to declare demand truthfully for prices never realized in equilibrium are not strict and any
outcome equivalent declaration is an equilibrium strategy.
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uniform price auction imply that if a small mass of bidders at the margin moves, the price

will shift only a small amount. This implies continuity of the interim price function in the

weak-* topology. However, to establish continuity of the allocation function, we require

that the interim price allocation be continuous in the stronger Kolmogorov topology. This

requires noting that if the marginal bidders are part of an atom of bidders at demand

declaration q, for small enough changes in the distribution of declared demands (under

the Kolmogorov topology), an atom of marginal bidders will remain at q and the market

clearing price will remain unchanged. The stationarity of atoms in the price distribution

strengthens continuity under the weak-* topology to continuity under the Kolmogorov

metric.

The proof of the continuity of the allocation functions, fx(q; �M)gq2M, relies on the
fact that an agent�s stochastic allocation is determined by the interaction of his declared

demand schedule and realized market clearing price falls. From a simple revealed preference

argument, we can show that demand for any type of agent is weakly decreasing in price,

which implies the agent�s demand schedule can be de�ned as a (�nite) set of upper contour

sets in the space [0; v] of prices. Because the interim market clearing price, p(�M), is

continuous in the Kolmogorov topology on the range, the probability that the interim

price lies in one of these upper contours is continuous in �M. Continuity of the allocation

function in the follows immediately.

Lemma 2. The unique equilibrium of the nonatomic game is a fully revealing rational

expectations equilibrium in which agents use bidding strategies increasing in their own type.

The ex post price, p(!; r), and supply, r, are su¢ cient to fully reveal !.

Given we have established that our mechanism is continuous and presumed that our

utility function is continuous as well, it remains to derive the equilibrium behavior of

our nonatomic limit economy. In the nonatomic limit game, the price function p(�Mo ) is

exogenous to any agent�s individual decision. Therefore, agents have no incentive to lie and

any potential equilibrium will be truthful over the range of price realized in equilibrium.

Therefore, agents will declare a demand schedule equal to

(3.9) D�(p) = argmax
x2f0;1;:::;Kg

E[u(x; !; �)j�; p]� p � x

where the expectation takes into account the common knowledge of the equilibrium strate-

gies of the agents in the nonatomic game. Since we have assumed that u(�; ��; x) is

strictly increasing in � and supermodular and the conditional distribution of types is log



THE SIMPLE BEHAVIOR OF LARGE MECHANISMS 33

supermodular, the demand schedules of the agents in the limit game will be strictly in-

creasing in �: We show that this implies that the ex post price function p(!; r) is strictly

monotone in (!; r). Therefore p = p(!; r) and the value r are su¢ cient to discover !.

We can show that the nonatomic model is informationally e¢ cient with respect to the

equilibrium price function p(!; r). Intuitively, this is because the agents incorporate all

information available with respect to this sigma algebra into the computation of their

optimal demand schedule declaration. In the case of private values, as their is no value in

conditioning on the equilibrium price, we �nd that the nonatomic uniform price auction is

ex post e¢ cient.

Lemma 3. In the Private Values Case, the nonatomic equilibrium is ex post e¢ cient. In

the Common Values Case, let the sigma algebra (
 � (0;K);P) be the coarest such that
p(!; r) is measurable. Finally, let P�be the coarsest sigma algebra containing P � B(�):
Then the allocation is informationally e¢ cient with respect to P�.

Given the nonatomic limit game equilibrium, we can then claim from our theorem 11

the following result on the asymptotic behavior of our large uniform price auctions:

Theorem 7. For any " > 0, � 2 [0; 1) we can choose N� such that for N > N� the

equilibrium of the N agent auction has the following properties

� Ex post "-e¢ cient in the Private Values Case
� Informationally ("; �)-e¢ cient with respect to P�, where (
 � (0;K);P) be the
coarest such that p(!; r) is measurable and P� is the coarsest sigma algebra con-
taining P � B(�)

� The N -agent equilibrium price distribution, pN (!; r) : 
� (0;K)! �([0; v]); con-

verges to p(!; r) almost surely.

Analyses of the equilibria of large �nite auctions are complicated by the strategic in-

teractions of the bidders, which in the case of the uniform price auction involves bidders

withholding demand to lower the market clearing price. Our analysis was simpli�ed since

the nonatomic form of the auction reduces to a stochastic Walrasian economy that can be

analyzed without the preference restrictions required to employ game theoretic techniques.

Once the mechanism was shown to be continuous, our main theorems let us employ the

nonatomic game as an approximation to the large �nite game. Therefore, the e¢ ciency

of the Walrasian equilibria implies "-e¢ ciency of the large �nite auction. In addition to

the novelty of the result, this analysis demonstrates the simplicity with which mechanisms

can be analyzed using our techniques.
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Our approximation theorems, most notably Theorem 4, prove that the equilibrium cor-

respondence is upper hemicontinuous in N . If the set of equilibria is empty in the large

�nite game, then our approximation theorems are of little use. However, if we �nitely dis-

cretize the space of bids, we can use Milgrom and Weber [60] to show existence of a mixed

strategy in the large �nite games. Combined with Theorem 7, we see these mixed strate-

gies approach strategies that are approximately outcome equivalent to an e¢ cient truthful

strategy for a su¢ ciently �ne gridding.33 E¢ ciency in turn implies the monotonicity of

McAdams [56] as N !1.

3.3. Extension.

3.3.1. Private Values. Consider the private values formulation. In this setting there is no

question of extracting information from prices as in a rational expectations equilibrium.

Therefore, the nonatomic limit game is a private values general equilibrium exchange econ-

omy. The only condition we require on the agent valuation functions is that they be weak-*

continuous in the random allocation-price that the agent receives. We could extend our

analysis in the private value case to:

� Expected utility preferences with or without a common prior34

� Risk averse preferences
� Agent valuations are drawn from a (�nite) set of assymetric valuation distributions
� Agents are loss averse with any reference point

For each of these preference relations, truthful revelation of demand remains an equilib-

rium of the private values nonatomic limit game. Therefore, equilibria of the large �nite

game will be approximately truthful and approximately e¢ cient. We conjecture that

truthful revelation would remain an equilibrium of the partially private values nonatomic

limit game, but properties such as approximate e¢ ciency and information aggregation may

not hold.35

33In this context, the degree of approximation is increasing in both the �neness of the gridding and the
number of agents.
34We show that truthful declaration is an equilibrium of the limit game, but agents only have strict prefer-
ences to declare truthfully for prices realized in equilibrium. For the entire set of equilibria of the nonatomic
limit game to be outcome equivalent we require a restriction on the admissable agent priors. Speci�cally,
agents at the interim stage must assign positive probability to the event that the ex post price lies in any
interval of prices that occur in a truthful equilibrium.
35For example, if the agents hold heterogeneous priors over the distribution of types in the economy, it
could be the case that di¤erent agents draw di¤erent inferences from the same ex post price realization. It
is not clear whether information will aggregate or e¢ cient outcomes will be realized in the uncommon prior
setting. This is an interesting question for future reesearch.
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3.3.2. Multiple Types of Goods. Finally, our proof techniques could be extended to an

auction for multiple types of goods, but the problem in this case becomes de�ning a price

mechanism. In the single good case, the market clearing price is de�ned to fall somewhere

between the highest losing and lowest winning bid. Any choice within this range su¢ ces to

reproduce our results and is unique in the allocation outcome. However, the most natural

set of market clearing conditions for an economy with L types of good with Ml units of

good l to be allocated are
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(Individual Demand) x(�M; q; r) 2 q(p(�M; r))

p(�M; r) 2 �P = fp :
Z
q(p) � �M(dq) � M

N
and

(Market Clearing)

for all � 2 R+nf0g,
Z
q(p� �) � �M(dq) 
 M

N
g

where the price is selected from �P . Even if we assume that the market clearing condition

is supplemented with a selection rule such as

(Revenue Maximization) p(�M; r) = argmax
p2�P

p �
Z
q(p) � �M(dq)

it is not clear in our context that a unique price would result.

An alternative solution would be to consider L large uniform price auctions, one auction

for each of the types of goods. Once agent preferences are revealed, the auctions are

resolved in random order. This would be equivalent to the following procedure:

(1) Choose a permutation, � : f1; ::; Lg ! f1; :::; Lg
(2) Let �P0 (�) = �

P (�)

(3) For i 2 f1; ::; Lg, let �Pi (�) = fp : p 2 �Pi�1(�) and for all p0 2 �Pi�1(�), p�(i) �
p0�(i)g

This procedure obviously results in a selection of a price that is continuous in the

Hausdor¤ metric on �P . It remains to show that �P is continuous in this metric ifR
q(p) � �M(dq) is continuous in the Kolmogorov metric over �M, which is trivial to show

through a backward induction argument given the proofs we have already completed.36

4. Dynamic Games and Econometrics

The principle theorems of this study are developed for static mechanisms. However,

there are useful cases in which the results can be extended to dynamic games and mech-

anisms. Dynamic competitive economy models feature a measure 1 continuum of agents

who respond optimally to their correct expectations about market aggregates in the present

and all future periods. These models presume that market aggregates, such as market

36The only subtlety is to note that continuation values for the L � 1st auction are functions of the (con-
tinuous) outcome of auction L. Therefore, an argument as presented here applied to the L � 1 auction
outcome function, combined with continuity of the continuation values, implies continuity of the L � 1st
auction. Induction implies continuity of all L auctions.
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price, are exogenous to a single agent�s action but are consistent with the aggregate dis-

tribution of actions taken by all agents. An alternative modeling technique uses large

stochastic games and game theoretic equilibrium concepts in which each agent is presumed

to respond optimally given the agent�s hierarchy of beliefs. A generic agent i�s hierarchy

contains beliefs about the actions of other agent�s, the beliefs about other agents�beliefs

about the action of agent i, beliefs about the other agents�beliefs about agent i�s beliefs

about the beliefs of other agents�beliefs about agent i�s action, ad in�nitum. Typically

stochastic games become computationally intractable to solve or estimate with more than

a handful of agents. On the other hand, it is usually uncertain how well the continuum

of agents in a dynamic competitive economy model capture the behavior of a large, but

�nite, number of agents in the real economy.

The focus of our work is to provide tools for practitioners interested in either compu-

tationally solving or econometrically estimating large stochastic games. The closest work

to ours is a series of papers by Benkard et al. ([15], [16],[17]), whose analysis is restricted

to a model of industry competition formulated �rst by Ericson and Pakes [29]. Our work

provides a general framework for approximating large stochastic games with dynamic com-

petitive models and, importantly, the conditions under which our approximation techniques

are valid are based on the primitives of the model. The analyst need not conduct any

game theoretic analysis to verify that our techniques are applicable.

The possibility of this extension may surprise readers familiar with Green [35] and

Sabourian [81], both of which required stronger topological notions of continuity than we

have employed to generate limits relating large �nite dynamic games with the nonatomic

analogs. In lieu of these more complex topological notions, we will be required to place

restrictions on the equilibrium strategies of the agents. While the restriction of endogenous

outcomes is undesirable, the restricted strategy space is natural in a variety of settings of

interest to applied theorists and econometricians.

We will consider an N agent repeated game with the goal of analyzing the equilibria

as N ! 1. As in the sections above, we will employ a nonatomic game played by a

measure 1 continuum of agents as an approximation of a game played by a large �nite

number of agents. Our goal will be to establish su¢ cient conditions for the equilibria

of the nonatomic limit game to serve as approximations of the equilibria of games with a

large �nite number of agents. Further, given the su¢ cient conditions we outline, we will

argue that the equilibria of the large �nite games are in practice more di¢ cult to compute

or estimate than equilibria of the analogous nonatomic limit games.
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Proofs for the theorems of this section are omitted for length, but are available from the

author upon request.

4.1. Model. Agent actions are drawn from a �nite dimensional Polish metric space (A; dA):
Since we will allow mixed strategies, we will also require the space of lotteries over �(A)
endowed with the weak-* topology.37 The agent type space is a set � � Rd. The model
admits an exogenous aggregate shock term we denote ' 2 	 � Rd, where we treat 	 as

a subset of the d-dimensional Euclidean metric space. We will assume that the aggregate

shock term is Markovian with transition probability function Y : 	�B(	)! [0; 1], where

B(	) is the standard Borel sets over 	.
Our state of the economy is comprised of two components. The �rst component is

the distribution of agent types in the economy, �� 2 �(�); endowed with the weak-

* topology.38 The second component is the current value of the aggregate shock term,

' 2 	. The state space is then the product space S=�(�)�	 with a generic state denoted
s = (��; ') 2 S. When we are dealing with N -agent economies, the �rst component of
the state will be restricted to those measures that can be generated by the empirical

distribution of the N -agent types, and we denote the space of such N�agent compatible
empirical measures as �N (�). We denote this restricted state space as SN � S and endow
SN with the relative topology inherited from S. Where required, we will treat S as a metric

space (S; dS) where

(4.1) dS(s = (�
�; ');es = (e��; e')) = d�LP (��; e��) + ke'� 'k

where k�k refers to the Euclidean norm on 	: In equilibrium, this is equivalent to a model

that allows payo¤s to be a¤ected by the aggregate actions of the agents in the market (ex:

price distributions from competitors) or state variables that are a function of either agent

types or actions (ex: aggregate production or investment).

The utility of each agent in each period of the N -agent game is generated by the felicity

function wN : � � S � A ! R where wN (�; s; a) is the utility payo¤ for an agent taking
action a given his own type � and state of the economy s. In taking the limit as N !1,
we will employ a family of felicity functions fwN : � � S �A ! Rg1N=1. The restriction

to this form of utility is signi�cant in two regards. First, the agent utility is a¤ected

only by the anonymous state of the economy. If two agents in the economy swap types,

the utility of the other agents will not be a¤ected. Second, utility of a given agent in

37We let dALP : �(A)� �(A) ! R+ denote the Levy-Prokhorov metric that metrizes the weak-* topology
over �(A).
38We let d�LP : �(�)� �(�) ! R+ denote the Levy-Prokhorov metric that metrizes the weak-* topology
over �(�).
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the present period is not a¤ected by the actions taken by the other agents in the present

period. However, as we see below, other agents�actions in the present period a¤ect the

state of the economy realized in the future, so the actions of others will in�uence an agent�s

value function in the present period through the continuation values. The felicity function

of the nonatomic limit game will be denoted w : �� S�A ! R. Intertemporal utility at
time t is then

UN (a) = (1� �) � Et

" 1X
�=0

��wN (�
i
t+� ; st+� ; at+� )

#
(4.2)

U(a) = (1� �) � Et

" 1X
�=0

��w(�it+� ; st+� ; at+� )

#
(4.3)

where � 2 (0; 1) is the time discount factor, a = (a0; a1; :::) with at being the vector of

per-period actions of the agents at time t, �it is agent i�s type at time t, and �
�
t is the

distribution of types in the economy at time t.

The per-period payo¤s in the limit game (N ! 1) are determined by the function
w : �� S�A ! R, which assumes that all payo¤ relevant e¤ects are captured by market

conditions s 2 S, the agent�s type � 2 �, and the agent�s reaction to these conditions

a 2 A: The following assumption implies that the preferences of the agents in the N -agent
game approach the preferences of the agent in the limit game as N !1.

Assumption 9. w(�; s; a) = Lim
N!1

wN (�; s; a) uniformly for all (�; ��; a) 2 �� S�A

We then assume39

Assumption 10. fw(�; �; a) : S! Rg��A is uniformly equicontinuous.

Assumption 11. w : �� S�A ! R is bounded.

We assume an agent�s type evolves according to the probability transition function T :

��B(�)�S�A ! [0; 1] where B(�) refers to the standard Borel sets on � endowed with
the Hausdor¤ metric. For a present state of the economy s = (��; ') 2 S; agent action a 2
A, current agent type � 2 �, and target set U 2 B(�), the probability that an agent of
type �t at time t has a type �t+1 2 U next period is T (�t; U ; s; a). Conditional on the state
of the economy, s, agent type transitions are stochastically independent. Where confusion

will not result, we will treat T (�; �; s; a) as a measure over � and endow the space of such
measures with the weak-* topology.

39Note that uniform continuity of w : �� S�A ! R implies our continuity assumption.
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The type transition function allows the e¤ect of an action, a 2 A; to depend both on
the agent�s current type and the state of the economy. For example, the dependence on

present type can be used to re�ect higher capital depreciation level when capital stocks are

high. The dependence of the transition function on the state of the economy can be used to

re�ect in�uence of the aggregate state on the e¤ectiveness of actions taken by a �rm. For

example, in a model of R&D races, if the agent�s action re�ects investment in a research

project and the type re�ects a stock of intellectual capital, then economies where �rms

are aggressively pursuing research projects may make it less likely that a particular �rm�s

research project wins the race to a novel discovery. This would reduce the e¤ectiveness of

a given level of research expenditure when research level is high on average.

In some portions of this study we will restrict our analysis to a subset of the set of

possible type evolution operators that are independent of the state of the economy.

De�nition 8. The type evolution operator T (�; �; s; a) is state independent if for all
s; s0 2 S, we have T (�; �; s; a) = T (�; �; s0; a)

4.2. Equilibrium De�nitions. The per-period payo¤s in the limit game (N ! 1) are
determined by the function w : � � S � A ! R, which assumes that all payo¤ relevant

e¤ects are captured by market conditions s 2 S, the agent�s type � 2 �, and the agent�s
reaction to these conditions a 2 A: We will let the strategy space, denoted �, consist of
all measurable maps from � � S into �(A) that are continuous in S: Let �C denote the
elements of

Assumption 12. The agents are restricted to choosing Markovian strategies � : �� S!
�(A) that are continuous in S.

Agent i�s discounted expected utility in the N -agent game, assuming the use of sym-

metric strategies by the agents, can then be written in value function form

(4.4) VN (�
i
t; stj�) = (1� �) �

�
Et[wN (�

i
t; st; �(�

i
t; st))] + �Et

�
VN (�

i
t+1; st+1j�)jst

��
The term Et[w(�

i
t; st; �(�

i
t; st))] re�ects an expectation over the mixed strategy �, whereas

Et
�
VN (�

i
t+1; st+1j�)jst

�
is an expectation taken over continuation values with respect to

next period�s type and next period�s state of the economy. Note that the above for-

mulation employs the symmetry restriction at two points. First, we are able to drop the

notational complexity of separately tracking the strategies of the agents. Second, and more

importantly, the value function can be written semi-anonymously since the distribution of

types and the symmetric strategy are su¢ cient to determine the distribution of future

types and actions. In order to consider optimality conditions, we will let VN (�it; stj�0i; ��i)
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denote the utility of agent i in the N -agent game when he follows strategy �0i and all other

agents follow strategy �:

De�nition 9. A symmetric ("; �)�Markov Perfect Equilibrium ("�MPE) strategy and
state pair (�MPE ; s0) 2 � � S of the N -agent game such that for all agents i 2 f1; :::; Ng
we have

(4.5) sup
�02A

VN (�
i
t; stj�0i; �MPE

�i ) � VN (�it; stj�MPE) + " for all � 2 �; st 2 S

for at least a measure 1 � � of states st of the economy realized along the path of play
commencing at state s0:

The equilibrium is not exact since we only require that the strategies provide a payo¤

within " of the feasible optima. Second, we require that the strategy only be approximately

optimal a fraction 1 � � of the periods along the path of play. From the full support of

T , the restriction to states realized along the path of play is vacuous since all state of the

economy are, potentially, on the future path of equilibrium play.40

In the nonatomic dynamic game, a continuum of agents participate in the game in each

period. The value function formula for the nonatomic limit game when all agents play the

symmetric strategy � is then

(4.6) V1(�
i
t; stj�) = (1� �) �

�
Et[w(�

i
t; st; �(�

i
t; st))] + �Et

�
V (�it+1; st+1j�)jst

��
The term Et[w(�

i
t; st; �(�

i
t; st))] re�ects an expectation over the mixed strategy �, whereas

Et
�
VN (�

i
t+1; st+1j�)jst

�
is an expectation taken over continuation values with respect to

next period�s type and next period�s aggregate shock. In order to state our approximation

theorems we need to de�ne the nonatomic equivalent of an MPE. We will de�ne a general

notion of equilibrium in a dynamic continuum economy with aggregate uncertainty.

De�nition 10. A symmetric "�Dynamic Competitive Equilibrium ("-DCE) consists of a

strategy �DCE : �� S! �(A) such that for any st = (��t ; 't) 2 S
(1) For all U 2 B(�)

��t+1(U) =

Z
A��

T (�; U ; st; �
DCE(�; st)[da]) � ��t (d�)

(2) For all � 2 � and a 2 A we have

V1(�
i
t; stj�DCE) + " � Et[w(�t; (��1; '); a)] + �Et

�
V1(�

i
t+1; st+1jai; �DCE�i )jst

�
40The usual notion of Markov Perfect Equilibrium requires optimality at every state, whereas our
(0; 0)�MPE notion allows very suboptimal bevaior at a measure 0 set of states.
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Note that given the state of the economy at time t, the distribution of types at time t+1

is common knowledge. The only uncertainty to be resolved at time t+1 is with respect to

the aggregate shock and each agents�own type at t+ 1. The state at t+ 1 is determined

by the strategy of the measure 1 of other agents, �DCE�i , and the exogenous distribution of

aggregate shocks. The agent�s own deviation can only a¤ect his present period payo¤ and

his future distribution of types. Also note that the " term is used to denote the degree of

approximation of the agent�s best response to the present state of the economy and future

uncertainty. The optimality criteria is applied across all states, even those that are not

reachable along the equilibrium path.

A common restriction of the competitive dynamic equilibrium notion de�ned above is

that of a stationary equilibria, a nonatomic equilibrium concept wherein the economy is

assumed to have no aggregate uncertainty and the state of the economy is reduced to a

distribution of agent types that remains constant over time. We will assume a measure

one mass of agents whose types at t = 0 are generated according to the type distribution

��1. Equilibrium will be de�ned as follows:

De�nition 11. Assume 	 = f'g is a singleton. A symmetric "�Stationary Equilibrium
("-SE) consists of a strategy �SE : �! �(A) and type distribution ��1 2 �(�) such that

(1) For all U 2 B(�);

��(U) =

Z
A��

T (�; U ; (��; '); �(�)[da]) � ��(d�)

(2) For all � 2 � and a 2 A we have

w(�t+� ; (�
�
1; '); �(�t+� )) + " � w(�t; (��1; '); a)

Conditions (1) implies that endogenous quantities are stationary given the equilibrium

strategies.41 Condition (2) implies that for each type, the action dictated by the strategy

is optimal given the stationary, endogenous quantities. Note also that our optimality

criteria is only applied at the stationary state (��1; ') and not o¤ the equilibrium path.

For generic games it will not be the case that the approximate optimality condition will

hold generically o¤ the equilibrium path. The usefulness of this equilibrium concept lies in

the fact it is �nite dimensional and hence computationally tractable rather than it�s power

as an equilibrium selection tool. For existence results on exact DCE or SE in continuum

games, please refer to Bergin and Bernhardt [20].

41An alternative de�nition of an "-SE weaken condition 1 to:

(1) For all U � �; j��(U)�
R
A�� T (�; U ; (�

�; '); �(�)[da]) � ��(d�)j < "
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The crucial conceptual di¤erence between the large �nite game and the continuum analog

is that the in an MPE of the large �nite game, the state of the economy is allowed to

change in response to agent actions. In the continuum game, the state of the economy is

exogenous to any agent�s action. We de�ne the state transition function of the continuum

game without aggregate uncertainty as PC(��t ) = �
�
t+1 where for any U 2 B(�) 42

(4.7) ��t+1(U) =

Z
A��

T (�; U ; st; a) � �(�)[da] � ��t (d�)

When there is aggregate uncertainty in the model, the state transition probability function

of the continuum has the form

(4.8) For V � S, PA1(st = (��t ; 't); V ) =
Z
V
1fPC(��t ) = ��t+1g � Y ('t+1j't) � dst+1

where we denote st+1 = (��t+1; 't+1) 2 �(�)�	 = S:

4.3. Dynamics. We will focus our analysis on the properties of the dynamics of the state
of the economy induced by the combination of the symmetric agent strategies, � 2 �, and
the type evolution function, T . Where required we will explicitly refer to the state of the

economy as a random variable s:
�N! S. In this formulation, 
 refers to an underlying

probability space that de�nes the aggregate and idiosyncratic uncertainty of each of a

countable in�nity of agents for an in�nite, discrete time horizon.43 The continuum model

state of the economy can be described the random variable sC :
� N! S.

Consider an N�agent economy with a nonanonymous state space �N � 	:44 Let e :
�N ! �N (�) denote the Lebesgue measurable map that converts

�!
� = (�1; :::; �N ) 2 �N

into empirical distributions e(
�!
� ) = 1

N

PN
i=1 1f�i 2 Ag.45 Note that e is continuous: We

adopt the convention that for any U 2 B(�N ), e(U) = [�!
� 2Ue(

�!
� ). Let the correspondence

e�1 : �N (�)� �N denote the inverse of e : �N ! �N (�) with the convention that for V

� SN

(4.9) e�1(V ) = [��2V e�1(��)

42The mapping PC is not a transition probability function. Our change in notation preserves the di¤er-
entiation between the deterministic and stochastic components of our analysis.
43The state space for any model with N <1 is embedded in the space 
 Note that we require our state
space to de�ne the idiosyncratic shocks for a countable in�nity of agents so that we can consider limits of
the form N !1 without rede�ning our probability space.
44The space �N is nonanonymous in that types are assigned to each agent rather than aggregated into a
state of the economy �� 2 �(�).
45We would like to de�ne a family of functions feN : �N ! �(�)g1N=1. However we will simply refer to
a single function e and leave it to the reader to discern the proper interpretation. This should not yield
confusion within the context of our proofs.
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Consider a symmetric strategy � : � � S ! �(A): For any U � �N , the operator

relating the distribution of types at time t to the to the distribution at t+1 can be de�ned

as a Markov transition probability function, PN : �N �	�B(�N )! [0; 1]; that describes

the probability of a state
�!
� 2 �N transitioning into an open set U 2 B(�N ) in the next

period. For a rectangular set U = U1 � :::� UN where Ui � �, let

PN (
�!
� t; 't; U) =

NQ
i=1

Z
A
T (�it; Ui; (e(

�!
� t); 't); a)�(4.10)

�(�ti; (e(
�!
� t); 't))[da]

= Prf�!� t+1 2 U j
�!
� t; 'tg

The Cathedory extension theorem says that the de�nition of PN (
�!
� t; 't; U) for rectangular

sets U can be uniquely extended to any U � B(�N ). Note that the continuity of T and

� implies that PN is continuous in S.

We use the mapping from nonanonymous states to anonymous state, e : �N ! �N (�),

to translate the continuous Markov transition probability function over nonanonymous

states, PN : �N �	� B(�N ) ! [0; 1], into a continuous Markov transition function over

anonymous states, PAN : SN �B(S)! [0; 1]. B(S) is the family of standard Borel sets over
S. PAN can then be written for V1 2 B(�(�)); V2 2 B(	)

PAN (s= (�
�
t ; 't); (V1; V2))(4.11)

= PN (e�1(��t ); 't; e
�1(V1 \ SN )) � Y (V2j')

= Prf��t+1 2 V1; 't+1 2 V2j��t ; 'tg =

= Prf��t+1 2 V1j��t ; 'tg � Prf't+1 2 V2j'tg

From the Cathedory extension theorem, this description of PAN over products of Borel sets

can be extended uniquely to a Markov transition function PAN over the full state space

SN . Note that the t + 1 distributions of the idiosyncratic and aggregate certainty are

independent conditional on st:

Our next theorem describes the ergodic properties of strategies of the large �nite game.

We will study the properties of the family of operators fPAN : SN � B(S) ! [0; 1]g1N=1 on
the anonymous state of the economy induced by the type evolution operator T and a �xed,

continuous Markov strategy played symmetrically by all agents in the N -agent game. We

prove that for any �nite � , the behavior of the economy in periods t + 1 through t + �

can be approximated by the continuum economy transition function for su¢ ciently large
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N . Intuitively, as the number of agents in the economy becomes large, the idiosyncratic

shocks experienced by each agent are smoothed out in the large economy. The proof

of the theorem below uses our continuity and stochastic convergence results to make this

intuition precise. We let (PAN )
��(s; �) denote the �� step-ahead measure over states given

initial state s, and �s denote the measure that places an atom of weight 1 on state s.

De�nition 12. A function f : X ! Y between metric space (X; dX) and (Y; dY ) is �nitely
continuous if there exists a �nite partition � of X such that for all p 2 �, f restrictet to
p is uniformly continuous

The notion of �nite continuity extends the idea of continuity to a �nite number of subsets

of the domain of a function. Practically, this allows us to accomodate functions that admit

discontinuities restricted to a non-generic set of the domain. For example, suppose a pro�t

maximizing �rm enters only if it�s type, indicating production cost, is su¢ ciently low. This

strategy could be easily written as a �nitely discontinuous function partitioning the state

space into "entry" and "exit" regions. Such a strategy could, at best, be written as a

smoothed probability of entry in a continuous function of type.

Theorem 8. Assume:

� T is continuous in S�A and �nitely continuous in �

� � 2 � is uniformly continuous in S and �nitely continuous in �
� Fix �� <1, � > 0; and � 2 (0; 1].

If st = sCt ; then there exists N
� such that for economies with N > N� agents

(4.12) dLP ((P
A
N )

��(s(!; t); �); �(PC)�� (s(!;t))) < �

for � 2 f1; ::; ��g with probability at least 1� �:

4.4. Approximation Theorems. We �rst use our results on the ergodic properties of
the Stationary and Markov Perfect equilibria to show that for any " > 0; � 2 [0; 1) the Sta-
tionary equilibria are ("; �)�Markov Perfect Equilibria of a su¢ ciently large �nite dynamic
game. If we focus on the limit as the number of agents diverges to in�nity, this result is

similar to the claim that Stationary equilibria possess the Asymptotic Markov property of

Benkard et al. [16].

Theorem 9. Assume that:

� The type evolution operator T is state independent and has full support
� There is no aggregate uncertainty (	 = f'g)
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Consider a Stationary Equilibrium of the continuum game (�SE ; ��1). For any " > 0 and

� 2 (0; 1], we can choose N� < 1 such that �SE is an ("; �)-Markov Perfect Equilibrium

of the large �nite dynamic game for N > N� starting at ��1:

Theorem 9 cannot be generalized to generic cases when the type evolution operator

is not state independent. The reason is that the stationary distribution could be an

unstable equilibrium in the ergodic system de�ned by the large �nite economy. In this

case, stationarity in the continuum game does not imply ergodic stability for the large

�nite game.

The assumption of full support of the type evolution operator has important e¤ects in

the context of a Markov Perfect equilibrium of a dynamic economy. Since all states of

economy are on the path of future play and the Markov strategies only respond to the

present state of the economy, it is impossible for a model in our framework to capture

certain forms of collusion. For example, �rms in our model cannot engage in collusive

behavior enforced by trigger strategies dictating everlasting punishments. The reason is

that the state of the economy will, through random chance, eventually move out of the set

of states indicating the punishment regime is in e¤ect. However, we are able to capture the

presence of temporary punishments. A leading example would be a price war model akin

to Porter [71], although the end of the price war would be dictated by the type evolution

operator as well as the agent strategies.

The following theorem shows that the exact MPE are approximate DCE of the con-

tinuum model. Theorem 8 proves that the behavior of the large �nite economy can be

approximated by the dynamical system of the DCE induced by the exact MPE strategy.

As the MPE strategy is exactly optimal along the path of the MPE economy, it will be ap-

proximately optimal with high probability along the DCE economy�s path. Although this

theorem is of little interest directly, as it merely implies that di¢ cult to compute MPE can

be used to approximate more computationally tractable DCE, this theorem is an integral

stepping stone to Theorem 11 that proves that the set of MPE is upper hemicontinuous in

the limit as N !1, with the limit set composed of the DCE of the continuum model.

Note that the N -agent �MPE
N is de�ned only over SN . To state Theorem 10, we will

extend the N�agent equilibrium strategy �MPE
N to a continuous function e�MPE

N : ��S!
�(A) such that for all s2 SN we have e�MPE

N (�; s) = �MPE
N (�; s): To insure that this

extension is well behaved, we will have to assume that �MPE
N is uniformly continuous in S

and that the extension preserves this uniformity. From the de�nition of uniform continuity,

for each " > 0 we can choose �(") > 0 such that for all s,es 2 SN such that dS(s,es) < �(")
implies j�MPE

N (�; s) � �MPE
N (�;es)j < ". We refer to �(") as the modulus of continuity of
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�MPE
N . We refer to an extension of �MPE

N to S as modulus preserving if there exists C <1
such the modulus of continuity of the extension, e�("), obeys e�(") < C � �("):
Theorem 10. Consider a Markov Perfect Equilibrium strategy of the N -agent dynamic

game, �MPE
N : Assume:

� T is continuous in S�A and �nitely continuous in �

� � 2 � is uniformly continuous in S and �nitely continuous in �
� Fix �� <1, � > 0; and � 2 (0; 1].

For any " > 0, we can choose N� <1 such that if N > N�:

(1) Any uniformly continuous extension of �MPE
N from SN to S that is modulus preserv-

ing is an "�Dynamic Competitive Equilibrium for any initial state s 2 S. Further,
such an extension exists.

(2) Suppose S is compact46 and 	 = f'g, then (e�MPE
N ; s) 2 � � S is an "-Stationary

Equilibrium of the nonatomic dynamic game for N > N� agents where for all

U 2 B(�) where

��1(U) =

Z
A��

T (�; U ;��1; e�MPE
N (�; (��1; '))[da]) � ��1(d�)

and e�MPE
N is a modulus preserving extension of �MPE

N from SN to S.

The �nal theorem of our analysis of large dynamic games concerns the relationship

between exact Markov Perfect equilibria and exact Stationary equilibria of the continuum

game in terms of the realized actions for each type. If an econometrician estimates the

stationary equilibria of a large �nite economy, then theorem 11 implies that with high

probability the exact Markov perfect equilibria would prescribe actions that are close in

the action space to actions prescribed by the estimated stationary equilibrium.

Let the set of continuous Markov perfect equilibria of the N -agent stochastic game be

denoted by the correspondence E : N � �. Denote the equilibrium set of the nonatomic

dynamic game as ENA: The following theorem assures us that MPE are not merely "-DCE,
but that as "! 0, the MPE will approach some DCE strategy.

Theorem 11. Assume:

46It would su¢ ce that � is compact. Compactness is crucial for proving the existence of a stationary
distribution, which relies on a �xed point argument. Alternative �xed point existence conditions can be
employed if compactness is weakened. For example, it would also su¢ ce if the map

(4.13) F (�) =

Z
A��

T (�; U ;�; e�MPE
N (�; (�; '))[da]) � �(d�)

from �(�) into �(�) has a compact range.
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� T is continuous in S�A and �nitely continuous in �

�
1S
N=1

E(N) is uniformly equicontinuous in SN and continuous in �

Then the correspondence E is upper hemicontinuous with

Lim
N!1

E(N) = E1 � ENA

As in the case of Theorem 4, the intuition for Theorem 11 is that for the equilibrium

correspondence E(N) to fail to be upper hemicontinuous, there would have to be a sequence
of equilibria, f�Ng1N=1, such that if the agents followed this strategy in the nonatomic dy-
namic game, a positive measure of the agents would have a signi�cant pro�table deviation.

However, Theorem 10 proves that this is not possible. Our proof fomalizes this intuitive

argument. We require the assumption that
1S
N=1

E(N) is equicontinuous in order to show

that a sequence of continuous equilibrium strategies of the large �nite game converges to

a continuous strategy in the nonatomic game.

The restriction that
1S
N=1

E(N) be uniformly equicontinuous is di¢ cult to discern apri-

ori. The minimal assumption required to make us of our theorem is that there exists a

convergent sequence of f�N : �N 2 E(N)g and �N ! �1 such that �1 is continuous. If

the set
1S
N=1

E(N) is not uniformly equicontinuous, then there may exist sequences of MPE

that do not approach continuous DCE. It remains an open question as to whether any

discontinuous DCE can approximate these equilibria for large N:47

As in the case of the static game, we can prove a simple corollary from the upper

hemicontinuity result of Theorem 11: To so we need to assume the action space is a metric

space of the form (A; dA). Let the set of lotteries over A be a metric space under the Levy-
Prokhorov metric, which de�nes a metric space (�(A); dLP ). Under these assumptions,

we can state Theorem 11 in terms of metric convergence.

Theorem 12. Assume:

� T is continuous in S�A and �nitely continuous in �

�
1S
N=1

E(N) is uniformly equicontinuous in SN and continuous in �

� Consider �MPE
N 2 E(N)

47The essential problem with proving the discontinuous DCE limit approximates the large �nite MPE
sequence is that the discontinuity in the limit may cause the ergodic properties of the large �nite game to
fail to resemble the dynamical orbit of the nonatomic limit. Nonpathological examples where this is the
case can be easily constructed, but conditions under which this fails to occur is a nontrivial question.
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For any � > 0, we can choose N� <1 such that if N > N� there exists a DCE

equilibrium strategy, �DCE ; of the continuum game such that for all � 2 � and

s2S we have j�MPE
N (�; s)� �DCE(�; s)j < �:

Theorem 11 shows that the actions taken by the agent in the MPE are approximated

well by some DCE strategy of the nonatomic limit game. This result can substantially

reduce the dimensionality of the parameter space required to solve or identify this model

compositionally. First, note that an exact MPE is a function of the agent�s own type

and the current state of the economy. However, the state of the economy includes the

distribution of agent types in the economy, which implies a curse of dimensionality occurs

over a �nite horizon since the state of the economy is an in�nite dimensional variable in

the limit as N ! 1. However, in the DCE economy, given the state of the economy at

time t, st; the state of the nonatomic limit economy at time t + � is determined uniquely

by the sequence of shocks f't+1; :::; 't+�g. Therefore, optimal actions in a DCE can be

written as functions of the initial state, st, the history of aggregate shocks between t + 1

and t+ � , f't+1; :::; 't+�g, and the agent�s own type, �t+� .
We will use the notation

�DCE(�jst) : ��
1S
�=0

	� ! �(A)

where
1S
�=0

	� represents the potential sets of future aggregate shocks. As noted in Benkard

et al. [17], under this notation �DCE is not formally Markovian in that it depends on payo¤

irrelevant information, the history of aggregate shocks and a past state of the economy.

This formulation has the bene�t that the state space of the strategy,
1S
�=0

	� , is not a func-

tion of the number of agents in the economy and no curse of dimensionality problem results

as N ! 1. For the purposes of identi�cation and computational tractability, some as-

sumption must be made regarding the in�uence of past shocks. Benkard et al. [17] propose

either an exponentially decayed weighting scheme or that only a �nite history of aggregate

shocks in�uences the present period�s action. Either assumption limits the in�uence of

the past on the present period�s action and reduces the asymptotically in�nite dimension

MPE strategy space to a tractable, �nite dimension space of functions. Of course, any

such scheme is an approximation of the DCE formally de�ned as an approximation in our

theorems above, and our work has provided no assurance that any such approximation

scheme is asymptotically consistent.48

48Benkard et al. [17], in a model of dynamic industry competition, and Krussel and Smith [47], in a
macroeconomic context, provide evidence that in some modeling contexts reducing an in�nite dimensional
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One form of DCE of particular interest is the SE de�ned above. A SE requires both

a lack of aggregate shocks and a stationary state of the economy. As SE strategies are

functions from the type space to the action space, the equilibrium strategies can be de�ned

by a �nite dimensional function regardless of the number of agents in the economy or the

time horizon for prediction. Therefore, if the stationarity and no aggregate uncertainty

assumptions are satis�ed by the data, an econometrician can use a low dimensional model

to estimate models of the behavior of industries with an arbitrarily large number of par-

ticipants. Further, computing policy experiments by estimating counterfactual SE states

is also computationally tractable.

4.5. A Note on Macroeconomics. Numerous modern macroeconomic models use large
dynamic games as microfoundations for the phenomena of interest. The analysis often

proceeds by assuming a continuum of nonatomic agents that take the market aggregates as

immutable when solving their individual optimization problems. The use of a continuum

of nonatomic agents is a plausible technique for approximating real economies that involve

a large, but �nite, number of agents interacting to e¤ect equilibrium outcomes. In the vast

majority of these studies, the use of this approximation is neither questioned nor tested.

Although it is beyond the scope of this paper to investigate particular macroeconomic

models, the analysis conducted above in the context of the Ericson and Pakes framework

could be readily extended to assess whether macroeconomic models satisfy the requisite

continuity properties. If the continuity properties are satis�ed, then the model is likely an

adequate approximation of the underlying behavior of the agents in the economy. In the

event that the continuity property is not satis�ed, care ought to be taken when interpreting

the results of the analysis.

5. Conclusion

Large �nite mechanisms have become important in several di¤erent branches of the

economics literature, but the central intuitions underlying the relation to their nonatomic

analogs has not been expressed in a fashion suitable for applied theoreticians and econome-

tricians prior to this work. We have shown that in a general mechanism design framework,

weak continuity and semi-anonymity restrictions are su¢ cient for the nonatomic mecha-

nisms to approximate the outcomes of their large �nite analogs. Further, we are able

to show that as the number of agents increases, the approximation improves in both the

strategy and payo¤ space of the model.

problem to a �nite dimensional problem will result in little loss of predictive accuracy. The extent to which
these suggestive results would extend to the contexts we treat is an interesting topic for future research.
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One reason that the study of the limit behavior of large �nite mechanisms has been of

increasing interest to microtheorists is the need to design well-functioning markets. A

leading example of such a design task was the FCC spectrum auction. Nonatomic models

are often easier to analyze than their large �nite equivalents, principally due to the ease

with which equilibria can be found when the agents treat market aggregates as exogenous

to their own decisions. If a candidate market�s nonatomic form meets the desiderata of

the designer and the market outcomes are continuous in the distribution of agent actions,

then the analyst can have con�dence that the large �nite implementation of the market

will almost achieve these properties.

The limit properties of large �nite markets are also of interest as models of the strate-

gic microfoundations for nonatomic economies such as Walrasian equilibria in exchange

economies. The search for satisfactory underpinnings for general equilibrium models is

almost as old as the notion of general equilibrium itself with early suggestions such as

Walras�s tâtonnement process. This search continues today with studies that employ the

sophisticated tools of modern game theory such as Reny and Perry [74].49 The theorems

in this work provide a simple set of tools for providing analyses of the relationship between

large �nite and nonatomic markets, which will be of use to economists studying markets

wherein price-taking provides crucial tractability but where the model is su¢ ciently com-

plex that providing a formal analysis of the behavior using game-theoretic techniques is

intractable. While we leave studies of this sort for future work, we note that this form

of analysis could potentially be of particular interest to macroeconomists concerned with

whether a price taking equilibrium can be founded on the decisions of strategically inter-

acting individual agents.

Our study of the uniform price auction with arbitrary preferences for multiple units of

heterogeneous goods is novel and has resisted prior e¤orts due to the di¢ culty of analyz-

ing the complex strategies of agents with complementary valuations for successive units.

However, when price taking behavior is assumed of the bidders a general equilibrium model

results, and the complementary valuations do not pose a tractability issue for showing either

the existence or e¢ ciency of the �nal outcome. Since price taking behavior is approxi-

mately optimal in the limit, the results we prove for the nonatomic uniform price auction,

such as the truthfulness50 and e¢ ciency of the allocation and price, hold approximately for

49Reny and Perry [74] take a fundamentally di¤erent approach to their analysis by �nding exact equilibria
for each game as N ! 1. We conjecture that our framework would provide many of the same results
within a less arduous analysis structure.
50The equilibrium is unique up to outcome equivalent deviations in the agent strategies from truthful
behavior.
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large auctions. These results are reassuring, since it is known that small uniform price

auctions may be neither truthful nor e¢ cient due to the incentive for agents to withhold

demand to manipulate the closing price of the auction. Large uniform price auctions are

frequently used to allocate items such as U.S. Treasury Bills and spectrum licenses, which

makes understanding the properties of the outcome under general preference structures

crucially important.

The second novel application concerned the behavior of the Markov perfect Equilibria

of stochastic games of interest to econometricians, industrial organization economists, and

labor economists. The large parameter space of these games has made estimating or

computationally solving models with more than a handful of agents intractable. However,

we are able to show that the Markov perfect equilibria of large stochastic games can in

many cases be approximated by the dynamic competitive equilibria of nonatomic Walrasian

models. In the case of stationary models, the Markov perfect equilibria can be well

approximated by stationary equilibria. Stationary equilibria have the practical advantage

of being of �xed, �nite dimension regardless of the number of agents. Potential applications

include the study of policy to regulate large markets or to analyze the anti-trust implications

of mergers in industries with a large number of participants.

Finally, our paper suggests that earlier works studying the convergence of large �nite

markets to competitive equilibria relied on symmetry and continuity. In an appendix,

we demonstrate this by using our framework to generalize the McLean and Postlewaite�s

[51] model of mechanisms for aggregating di¤use information as well as the leader-follower

model of Fudenberg, Levine, and Pesendorfer [31]. Given that we have identi�ed the

crucial continuity condition required for these markets to be well behaved as the market

grows large, we are able to generate many of the results of these papers under more general

assumptions using simpler proof techniques. In addition, it is clear that much of the prior

analysis of these problems was focused on developing the necessary continuity properties

without identifying them as such. In addition to demonstrating the power of the tools

and techniques we have developed, the analysis we provide emphasizes a deeper intuition

as to what makes these markets function well in the limit as N !1.
Interesting topics for future work include further exploring the e¤ects of markets that

become ex post in the limit as N ! 1. This implies a number of desirable properties

for the mechanism in terms of simplicity for agents to learn and play. In addition, a

number of large markets have been implemented that have resisted satisfying equilibrium

analysis, a leading example of which are one-to-one and many-to-one matching markets.

The framework outlined above could provide a powerful tool for analyzing these problems.
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6. Appendix A: Proofs

6.1. Uniform Glivenko-Cantelli Classes. We begin this section with some useful re-
sults from the theory of the weak convergence of empirical processes.51 We are able to use

this theory to extend the classical Glivenko-Cantelli theorem to �nite dimensional Euclid-

ean spaces, which implies convergence of empirical distributions to the underlying true

distribution as N !1. We are able to show that this implies weak-* convergence of the
empirical distribution to the true distribution and provide an asymptotic convergence rate.

First we will de�ne the notion of an empirical distribution.

De�nition 13. Given a set fX1; :::; XNg of independent realizations of a random variable

X : 
! T with distribution P , de�ne the associated empirical measure

(6.1) PN =
1

N

NX
i=1

�Xi

where �Xi is the measure that places weight 1 on the element Xi:

In this study we will focus on cases wherein the space T is a subset of the �nite dimen-

sional Euclidean space Rd, although other applications might require more general sets T .
In order to describe uniformity over a a family of measurable (with respect to Q) functions

F = ff : T ! Rg, we de�ne the norm

(6.2) kQkF = supff 2 F : jQf j =
Z
jf(t) �Q(dt)jg

Our asymptotics will focus on families of functions, F ; for which the expectation under the
empirical measure converges to the expectation under the true measure uniformly over the

51Readers desiring more information on these topics shoudl reference van der Vaart and Wellner [89]
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family of functions. Families of such functions are referred to as uniform Glivenko-Cantelli

classes.

De�nition 14. A family of measurable functions F = ff : T ! Rg is a Uniform
Glivenko-Cantelli class if for all f 2 F we have kPN � PkF ! 0 as N !1:

We will be particularly concerned with families of functions de�ned by indicator functions

over sets. In this setting, a class of sets C = fC � Tg is identi�ed with FC = ffC : fC(t) =
1ft 2 Cg for some C 2 Cg.52

Theorem 13. (van der Vaart et al. [89], p. 135) A class of sets C is a uniform Glivenko-

Cantelli class if and only if it forms a Vapnik-µCervonenkis (VC) Class

There are numerous methods for identifying VC Classes, most notably through shattering

conditions that de�ne the VC index of the class C: In lieu of providing references for formal
techniques for identifying VC Classes,53 we will focus on a subset of the family of lower

contours of Rd, sets of the form LR(q) = fp 2 Rd : p � qg. The Cumulative Distribution
Function (CDF) of a measure �0 can then be de�ned as F (q) = �0(LR(q)). We will make

use of the following metric over the space of measures over Rd:

De�nition 15. Consider two cumulative distribution functions F;G over the state space


 � Rd. The Kolmogorov (Uniform) metric is dK(F;G) = sup
x2


jF (x)�G(x)j

Given that the set L is a VC Class, we can obtain the following theorem.

Theorem 14. Consider a random variable X : 
 ! Rd, d < 1, with measure �0 and
associated CDF F (y) =

R
1fx � yg��0(dx): For N i.i.d. realizations, fX1; :::; XNg drawn

from �0, denote the empirical CDF FN (y) = 1
N

P
i=1 1fXi � yg: Then we have almost

surely

(6.3) dK(�N ; �0) = sup
y2Rd

jFN (y)� F (y)j ! 0

Proof. (Proof of Theorem 14) Since the sets of the form fx : x � yg for y 2 Rd are lower
contours and hence form a VC Class, we have that the class of functions F = ff : fy(x) =
1fx � ygg is a Uniform Glivenko-Cantelli class, and so uniformly across y 2 Rd we have
as N !1 almost surely

(6.4) FN (y) =
1

N

X
i=1

1fXi � yg !
Z
1fx � yg � �0(dx) = F (y)

52Let 1fEg refer to the indicator of event E.
53The interested reader is referred to van der Vaart et al [89] chapter 2 for references. Proofs that the
lower contours are VC classes (amongst other examples) is provided in that text.
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This can then be re-written

(6.5) dK(�N ; �0) = sup
y2Rd

jFN (y)� F (y)j ! 0

�

Corollary 4. De�ne the empirical measure generated by the counting measure over fX1; :::; XNg
as �N : Then �N ! �0 almost surely in the weak-* topology over �(Rd)

Proof. (Proof of Corollary 4) From Billingsley (p. 18, [21]) we have that FN (y)! F (y) at

continuity points of F implies �N ! �0 in the weak-* topology. Since we have uniform

convergence FN (y)! F (y) for all y almost surely, we have �N ! �0 in the weak-* topology

in the weak-* topology. �

Corollary 5. Consider a random variable X : 
 ! Rd, d < 1 associated CDF F (y):

Denote the N realization empirical CDF as FN (y). Then

Prf
p
N sup
y2Rd

jFN (y)� F (y)j > tg = C � e�2t
2

where the constant C > 0 depends only on the dimension d of the support of X:

Proof. (Proof of Corollary 5) This result follows directly from Theorems 2.6.7 and 2.14.9

of van der Vaart and Wellner [89]. �

6.2. Proofs of Theorems in Main Body.

Proof. (of Theorem 1) Given u(�; ��0 ; g(�; �)) is continuous, Mas-Colell [53] shows that
there exists a measure � over the space ��M such that

(6.6) �(f(�;m) : 8m0 2M; u(�; ��0 ; g(�
M
0 ;m)) � u(�; ��0 ; g(�M0 ;m0))g) = 1

Since we have assumed that � and M are subspaces of �nite dimensional Euclidean

spaces, the measure � generates such a conditional probability measure �M(�j�)54 over
the message space M that de�nes an equilibrium in distributional strategies for almost

all � 2 �. This strategy is obviously symmetric across agents. We will denote this

equilibrium distributional strategy m1 : �! �(M):

In order to convert the distributional strategies into pure strategies, consider � 2 �
and the associated distribution strategy m1(�).Let F � :M! [0; 1] denote the cumulative

distribution function (CDF) of the distribution m1(�). If F � is nonatomic, then for an

54This implicitly assumes that the equilibrium measure � over ��M has an associated conditional proba-
bility measure. Since we have assumed that � andM are subspaces of �nite dimensional Euclidean spaces,
the measure � generates such a conditional probability measure (see Durrett for [?] details).
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agent of type (�; p) 2 �E , let the pure strategy in the extended space be mE(�; p) =

(F �)�1(p). If F � has atoms and p =2 (F �)�1([0; 1]); then let mE(�; p) = (F �)�1(p) where

(6.7) p = minfp0 : p0 � p and p 2 (F �)�1([0; 1])g

Otherwise, letmE(�; p) = (F �)�1(p). ClearlymE(�; p) generates the same marginal dis-

tribution over the message space as m(�). Since m(�) met the Nash incentive constraints,

so does mE(�; p) over the extended type space. �

Proof. (of Theorem 2) Denote the empirical distribution of agent types and messages,

respectively, as ��N and �MN . From our Theorem 14, we have ��N ! ��0 and �
M
N ! �M0

almost surely in the Kolmogorov Metric as N !1. Consider ! 2 
 such that �MN (!)!
�M0 and ��N (!)! ��0 (we will drop the dependence on ! for notational cleanliness).

From the uniform pointwise convergence of uN to u, for any " > 0 we can choose N

su¢ ciently large that

(6.8) sup
(�;��;x)2���(�)�X

juN (�; ��; x)� u(�; ��; x)j < "

For the duration of the proof we will move between uN and u without including the " factor

in this step of our approximation, which can be made arbitrarily small for su¢ ciently large

N .

Consider " > 0. From the uniform convergence of the sequence fgn(�)g1n=1, we can
choose N1 such that for all � 2 �; �� 2 �(�), �M 2 �(M), and m 2M

(6.9) ju(�; ��; g(�M;m))� u(�; ��; gN1(�M;m))j <
"

2

From the uniform equicontinuity of fg(m; �)gm2M in a relatively open set around �M0
and the uniform equicontinuity of fu(�; �; �)g�2�, we can �nd for each �� > 0 such that if
dK(�

M
N ; �

M
0 ) < �

� and dK(��N ; �
�
0 ) < �

�, then we have for any � 2 �; m 2M

(6.10) ju(�; ��N ; g(�MN ;m))� u(�; ��0 ; g(�M0 ;m))j <
"

2

Since �MN ! �M0 and ��N ! ��0 , there exists an N2 such that for N > N2 we have

dK(�
M
N ; �

M
0 ) <

��

2 and dK(�
�
N ; �

�
0 ) < ��: Obviously we can choose N3 such that for all

N > N3 we have for all m; em 2M

(6.11) dK(�
M
N ; �

M
N +

1

N
[� em � �m]) < ��

2

In this case dK(�M0 ; �
M
N + 1

N [� em � �m]) < ��:
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Therefore, for N > maxfN1; N2; N3g we have for all � 2 � and m; em 2M

ju(�;��N ; gN (�MN +
1

N
[� em � �m];m))� u(�; ��0 ; g(�M0 ;m))j �(6.12)

ju(�; ��N ; gN (�MN +
1

N
[� em � �m];m))� u(�; ��N ; g(�MN +

1

N
[� em � �m];m))j+

ju(�; ��N ; g(�MN +
1

N
[� em � �m];m))� u(�; ��0 ; g(�M0 ;m))j

<
"

2
+
"

2
= "

But then this implies that for all em 2M

(6.13) ju(�; ��N ; gN (�MN +
1

N
[� em � �m]; em))� u(�; ��0 ; g(�M0 ; em))j < "

Therefore any m 2supp[m1(�)] where

(6.14) m1(�) 2 argmaxem2M u(�; ��0 ; g(�
M
0 ; em))

is an " optima of

(6.15) maxem2Mu(�; ��N ; gN (�MN +
1

N
[� em � �m]; em))

Given that the above argument holds for all ! 2 
 such that �MN (!) ! �M0 and that

the later convergence is almost sure with respect to P , we have that an ex-post "�Pure
Strategy Nash equilibrium is realized almost surely asymptotically. Therefore, for any

� > 0 there is a �nite N� such that the subset of 
 such that dK(��N ; �
�
0 ) < �� and

dK(�
M
N ; �

M
0 ) < �

� has measure at least 1� �. By letting N� = maxfN;N�g we have our
result. �

Proof. (of Theorem 3) By the same logic employed in the proof of Theorem 2, we know that

the K draw empirical distribution of messages induced by the strategy mN (�), denoted
�NK (with an associated empirical CDF over the message space denoted FK(�)), converges
almost surely to the true distribution �N1 (with CDF F1(�)) in the Kolmogorov metric on
the space of measures as K ! 1.55 Consider ! 2 
 such that �NK(!) ! �N1 as K ! 1
(we will drop the dependence on ! for notational cleanliness). Note that the nonatomic

form of the mechanism is then g(�N1; �).

55Note that we are not asserting that mn remains an equilibrium when we take the number of agent to 1.
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From the uniform pointwise convergence of uN to u, for any " > 0 we can choose N

su¢ ciently large that

(6.16) sup
(�;��;x)2���(�)�X

juN (�; ��; x)� u(�; ��; x)j < "

For the duration of the proof we will move between uN and u without including the " factor

in this step of our approximation, which can be made arbitrarily small for su¢ ciently large

N .

From the de�nition of Bayesian Nash equilibrium we have for all em 2 M and for all

m 2supp[mN (�)]

(6.17) EP [u(�; ��N ; gN (�
N
N ;m))� u(�; ��N ; gN (�NN +

1

N
[� em � �m]; em))] � 0

From Theorem 5 we know that

(6.18) P (
p
N sup
m2M

jFN (mN )� F1(m)j > �) � Ce�2�2

with the choice of C independent of the form of the equilibrium strategy. Let

(6.19) M = sup
x2X ;�2�;��2�(�)

u(�; ��; x)� inf
x2X ;�2�;��2�(�)

u(�; ��; x)

which is �nite from the boundedness of the utility function.

Since gN (�;m) uniformly (over m) converges pointwise to g(�;m) as N ! 1, we can
choose N1 > 0 such that for all N > N1 we have for all � 2 �; m 2M

(6.20) ju(�; ��1; gN (�N1;m))� u(�; ��1; g(�N1;m))j <
"

2

Since fg(m; �)gm2M is uniformly equicontinuous in a relatively open set around �M0 ; and

fu(�; �; �)g�2� is uniformly equicontinuous, then for any " > 0 we can choose � > 0 so that
if dK(��K ; �

�
1), dK(�

N
K ; �

N
1) < � we have uniformly over m 2M

(6.21) ju(�; ��1; g(�N1;m))� u(�; ��K ; g(�NK ;m))]j <
"

2

Therefore

(6.22) ju(�; ��1; g(�N1;m))� u(�; ��K ; gN (�NK ;m))]j < "

Using our convergence rate result, for any � > 0 we can choose N2 such that for K >

maxfN1; N2g we have for all m 2supp[mN (�)]

(6.23) ju(�; ��1; g(�N1;m))� EP [u(�; ��K ; gN (�NK ;m))]j < (1� Ce�2�
2

) � "+ Ce�2�2 �M



THE SIMPLE BEHAVIOR OF LARGE MECHANISMS 63

ju(�; ��1; g(�N1; em))�EP [u(�; ��K ; gN (�NK + 1

K
[� em � �m]; em))]j <(6.24)

(1� Ce�2�2) � "+ "+ Ce�2�2 �M

where the additional " in the second relation is a result of of �NK+
1
K [� em��m]! �NK in the

Kolmogorov metric as K !1 and the continuity assumptions imposed on fg(m; �)gm2M
and fu(�; �; �)g�2�: For � > 0 su¢ ciently small these relations can be written

(6.25) ju(�; ��1; g(�N1;m))� EP [u(�; ��K ; gN (�NK ;m))]j < 2 � "

(6.26) ju(�; ��1; g(�N1; em))� EP [u(�; ��K ; gN (�NK + 1

K
[� em � �m]; em))]j < 3 � "

Substituting these relations into the Bayesian Nash equilibrium condition yields for all

m 2supp[mN (�)] and em 2M

(6.27) u(�; ��1; g(�
N
1;m))� u(�; ��1; gN (�N1; em)) � �5 � "

For any choice of " > 0 we can choose N su¢ ciently large that for all m 2supp[mN (�)]

and em 2M

(6.28) u(�; ��1; gN (�
N
1;m)) + 5 � " � u(�; ��1; gN (�N1;m0))

Therefore mN (�) is an "�Nash Equilibrium of the nonatomic game generated by the strat-
egy mN (�). �

Proof. (of Theorem 4) Consider a sequence of exact Bayesian-Nash equilibrium strategies;

fmN : �! �(M)g1N=1 where mN 2 E(N). For all M 2 B(M), let

�N1(M) =

Z
�
PrfmN (�) 2Mg��0 (d�)(6.29)

�11(M) =

Z
�
Prfm1(�) 2Mg��0 (d�)(6.30)

Suppose mN ! m1 =2 ENA: This can be the case only if there exists �; " > 0 such that
for all N� > 0 there exists N > N� such that for a measure � of types of agents in the

nonatomic game such that for all m 2supp[m1(�)] the following holds

(6.31) u(�; ��0 ; gN (�
1
1;m)) + " < sup

m02M
u(�; ��0 ; gN (�

1
1;m

0))

From the continuity of u and g and the convergence of mN to m1 for any " > 0 we can

choose � > 0 and N large enough that if dLP (�11; �
N
1) < �, then for all m 2supp[mN (�)]
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and m�2supp[m1(�)]

(6.32) ju(�; ��1; gN (�11;m))� u(�; ��1; gN (�11;m0))j < "

Note that as

(6.33) sup
�2�

jmN (�)�m1(�)j ! 0

we have that �N1 ! �11 in the weak-* topology. Therefore, for any � > 0 we can choose N

large enough that dLP (�11; �
N
1) < �. Finally Theorem 3 implies for all m 2supp[mN (�)]

(6.34) u(�; ��1; gN (�
N
1;m)) + " > sup

m02M
u(�; ��1; gN (�

N
1;m

0))

But this implies for su¢ ciently large N that there cannot be an " better response in the

nonatomic game when the agents play m1. Since this holds for all " > 0, it must be the

case that m1 2 ENA: Since this holds for all such sequences of strategies, we have from
Theorem 17.16 of Aliprantis and Border [23] that the equilibrium correspondence is upper

hemicontinuous. �

Proof. (Proof of Theorem 6) Since the space �(M) is �rst countable, it su¢ ces to show

continuity with respect to sequences in �(M). Consider an arbitrary sequence f�Mt g1t=1
such that �Mt converges to �M0 in the Kolmogorov metric and an arbitrary " > 0. In

addition, consider and arbitrary continuous function f : X ! R:
From the boundedness of X we can de�ne M = sup

x;x02X
dX (x; x

0) < 1. From the

assumption that the discontinuities of G are di¤use, we can claim that there exists a

neighborhood UT of �M0 such that �MT 2 UT and a measure of at least 1 � "
2M of the

elements of G;denoted GC with corresponding index set �C � �, are continuous in this

neighborhood. The elements of GC are equicontinuous, implying that we can choose

T � � T such that for all g� 2 GC , dX (f(g�(�MT � ;m)); f(g�(�M0 ;m))) < "
2 .
56 Combining

these relations we have

(6.35) jE[f(g(�MT � ;m))� f(g(�M0 ;m))]j = j
Z
[f(g�(�

M
T � ;m))� f(g�(�M0 ;m))]Q(d�)j

� j
Z
�C

[f(g�(�
M
T � ;m))� f(g�(�M0 ;m))]Q(d�)j+M � "

2M

� "

2
+
"

2
= "

56In most of the other proofs of this work, the symbol N is reserved to refer to the number of agents in
the economy. In this proof, the symbol N denotes an index to the sequence of measures f�Mn g1n=1. The
usage of N within this proof will not be used in the remainder of the work.
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This implies that for any �xed m the convergence of �Mt to �M0 entails convergence of

g(�Mt ;m) to g(�
M
0 ;m) in the weak-* topology. �

Proof. (of Lemma 1)Consider a measure of declared demand curves �M; �M 2 �(M) such

that dk(�M; �M) < �. Since we assumed that demand curves are decreasing, we can de�ne

the aggregate demand in terms of K upper contour sets of the formM(x; p) = fq 2 M :

q(p) � xg: Since we know that upper contour sets from a Vapnik-Chervonenkis class, we

can conclude that dk(�M; �M) < � implies for all x 2 f0; :::;Kg and for all p 2 [0; v]; we
have j�M(M(x; p))� �M(M(x; p)) < �: This implies that aggregate demand,

(6.36) D(�M; p) =

Z
q(p) � �M(dq)

is continuous in the Kolmogorov metric over �(M). Since D(�M; p) is decreasing in p,

it is almost everywhere continuous in p.

Fix �M 2 �(M) and r. Suppose there exists some " > 0 such that for all � > 0 and

�M 2 �(M) such that dk(�M; �M) < � we have

(6.37) jp(�M; r)� p(�M; r)j > "

Without loss of generality, we assume p(�M; r) > p(�M; r): As � ! 0, for all p we have

D(�M; p)! D(�M; p), which implies from our Market Clearing conditions that D(�M; p)

must be discontinuous at p(�M; r). But then this occurs if and only if there is an atom

of agents declaring a price schedule with a discontinuity at p(�M; r): For generic r it will

not be the case that

(6.38) D(�M; p) = r > Lim
!0

D(�M; p� �)

and hence we neglect this case.57 But then consider the remaining case, wherein for all r0

in a neighborhood of r we have

(6.39) D(�M; p) > r0 > Lim
!0

D(�M; p� �)

But in this case, for � > 0 su¢ ciently small, if dk(�M; �M) < � then we have both

D(�M; p) > r > Lim
!0

D(�M; p� �)(6.40)

D(�M; p) > r0 > Lim
!0

D(�M; p� �)(6.41)

57This will occur for a measure 0 set of supplies, r, as this random variable is distributed nonatomically.
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But then this implies p(�M; r) = p(�M; r). From this contradiction, we see p(�M; r) is

continuous except at the measure 0 set of r wherein

(6.42) D(�M; p) = r > Lim
!0

D(�M; p� �)

Therefore, we conclude that p(�M) is continuous in the Kolmogorov metric on both the

domain and range. We strengthen our result to uniform continuity by noting that the

compactness ofM implies that �(M) is compact, and the Heine-Cantor theorem implies

that p(�M) is uniformly continuous.

It remains to show continuity of the allocation functions, x(�M; q); with respect to the

Kolmogorov topology on �(M). Since q(p) is weakly decreasing in price, we can write

(6.43)

fr : x(�M; q; r) = xg = fp(�M; r) : q(p(�M; r)) � xg \ fp(�M; r) : q(p(�M; r)) � xg

fp(�M; r) : q(p(�M; r)) � xg de�nes an upper contour in the space of prices, while
fp(�M; r) : q(p(�M; r)) � xg de�nes a lower contour set in this space. Since p(�M) is

continuous in the Kolmogorov topology on the domain and range, the probability of both

fp(�M; r) : q(p(�M; r)) � xg and fp(�M; r) : q(p(�M; r)) � xg (and hence their intersec-
tion) are uniformly continuous in �M for any such choice of price interval.58 Therefore,

for any " > 0 we can choose � > 0 such that if dk(�M; �M) < � then

(6.44) jPrfx(�M; q) = xg � Prfx(�M; q) = xgj < "

But then this simply implies equicontinuity of x(�; q) in the Kolmogorov metric. We can
again strengthen equicontinuity to uniform equicontinuity using the Heine-Cantor theorem:

It remains to show that realized agent utility

(6.45) E[u(�; !; x(�M;m))j�; p]� p(�M;m) � x

is upper semicontinuous in �(M)�M where �(M) is endowed with the weak-* topology

andM with the Euclidean norm. Note for two measure �M; �M 2 �(M) we have �M !
�M in the weak-* topology but not the Kolmogorov topology if there is a discontinuity

in the CDF of �M that moves as �M ! �M, which corresponds to an atom in �M with

changing support in the limit. However, a small shift in the support of an atom causes

a small shift in the aggregate demand, and hence we have p(�M; r) ! p(�M; r). This

implies that the only discontinuity can lie in x(�M;m) ! x(�M;m). In fact, from the

de�nition of x(�M;m) in terms of upper contours of price, it is clear that continuity of x

generically requires the Kolmogorov topology. Note from the market clearing condition

58This is another point wherein we use the uniformity of the Kolmogorov metric to our advantage.
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however, that x can only jump upwards as �M ! �M. This implies that x(�M;m) is

upper semicontinuous in �M in the weak-* topology. Since we require that agents only

declare demands below their true interim demand, agent utility can only increase due

to this sudden addition of a unit to his allocation. This implies agent utility is upper

semicontinuous in �M. Upper semicontinuity with respect to M follows by an identical

argument that discontinuities in x(�M;m) can only imcrease agent utility. �

Proof. (of Lemma 2) First we will prove that the agent demand schedule declarations must

be increasing in �, and then from this monotonicity show that p(!; r) must be increasing

in ! and decreasing in r in equilibrium. This in turn implies that the equilibrium price

distribution is fully revealing and that the equilibrium is e¢ cient.

Lemma 4. D�(p) must be weakly increasing in � in equilibrium. Further, � � e� and � 6= e�
implies there exists some p such that D�(p) > De�0(p):
Proof. Consider the problem facing an agent considering what quantity to demand given

their own type � and a market clearing price p = p(!; r). Note that market price, agent

type, and the state of the economy are jointly distributed in equilibrium according to some

PDF g(�; p; !). Since the market clearing price is exogenous to a single agent�s decision,

we have that � and p are independent conditional on !.

We will show that interim agent utility given (�; p) exhibits increasing di¤erences for

any equilibrium price function p(!; r). Consider

(6.46) E[u(�; !; x)j�; p]

which is an expectation with respect to ! given (�; p = p(!; r)). We can write

(6.47) g(!j�; p) = g(!; p; �)

g(�; p)
=
g(pj!) � f(�j!) � g(!)

g(�; p)

Consider � � �0 and ! � !0. Then we can write

(6.48)
g(!j�; p)
g(!j�0; p) =

f(�j!)
f(�0j!) �

g(�0; p)

g(�; p)

Assumption 8 that f(�j!) is log supermodular implies that
g(!j�; p)
g(!j�0; p) =

f(�j!)
f(�0j!) �

g(�0; p)

g(�; p)
(6.49)

>
f(�j!0)
f(�0j!0) �

g(�0; p)

g(�; p)
=
g(!0j�; p)
g(!0j�0; p)



68 AARON L. BODOH-CREED - STANFORD UNIVERSITY

Therefore g(!j�; p) is log supermodular in (!; �; p). If k > l and � � �0 we have

(6.50) E[u(�; !; k)� u(�; !; l)jj�; p] > E[u(�0; !; k)� u(�0; !; l)jj�0; p]

since u(�; !; k)� u(�; !; l) is strictly increasing in both � and ! from assumption 6. Since

E[u(�; !; k)jj�; p] has increasing di¤erences in (�; x), we have from Milgrom and Shannon

[59] that

(6.51) D�(p) = argmax
x2f0;1;:::;Kg

E[u(x; !; �)j�; p]� p � x

is weakly increasing in �: From the fact that E[u(x; !; �)j�; p] is strictly increasing in �,
a straightforward revealed preference argument shows that � � e� and � 6= e� implies there
exists some p such that D�(p) > De�0(p): �

First we will show that aggregate demand

(6.52) D(p) =

Z
D�(p) � ��0 (!)[d�]

is strictly increasing in ! at all prices p: Let �(k; p) = f� : D�(p) � kg, wihch we note is
an upper contour in � as D�(p) is increasing in �. Suppose that ! > !0, which implies

that ��0 (!) is greater than �
�
0 (!

0) in the strong stochastic order (see Milgrom [66] for a

proof). Then we have

(6.53) ��0 (!)[�(k; p)] > �
�
0 (!

0)[�(k; p)]

But we have that

(6.54) D(p;!) =
PK
k=1 �

�
0 (!)[�(k; p)]

Thus we have ! > !0 implies that D(p;!) > D(p;!0): Since the distribution of demand

curves is distributed nonatomically (as ��0 (!) is nonatomic), D(p;!) is continuous in p in

equilibrium. From our market clearing condition and the fact that ��0 (!)[d�] is nonatomic

we have in equilibrium

p(!; r) = sup
p2[0;v]

p such that
Z
D�(p) � ��0 (!)[d�] = r

and hence p(!; r) is strictly increasing in ! and decreasing in r in equilibrium. Therefore,

given an ex post realization of p(!; r) and r, the state of the economy is fully revealed.

�
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Proof. (of Lemma 3) First note that the decision problem facing the agent in the Private

Values case at the interim stage is

(Private Values) D�(p) = argmax
x2f0;1;:::;Kg

u(x; !; �)� p � x

No expectation is required since in the private value setting, there is no additional infor-

mation contained in the market clearing price. The �rst welfare theorem then reveals that

the outcome is Pareto e¢ cient, which in the quasi-linear case impliex ex post e¢ ciency.

The agents declare their demand truthfully after conditioning on the information con-

veyed by the equilibrium price. Formally, the agents declare their expected ex post utility

truthfully

(Common Value) D�(p) = argmax
x2f0;1;:::;Kg

E[u(x; !; �)jP�]� p � x

From the �rst welfare theorem, since each agent receives D�(p(!; r)), the outcome is ef-

�cient with respect to these informationally constrained utility assesments. Therefore,

the outcome is Pareto e¢ cient with respect to the interim demands calculated in (Com-

mon Value). In the quasi-linear utility setting we use, this is equivalent to informational

e¢ ciency with respect to P�. �

Proof. (of Theorem 7) Consider the private values case and �x " > 0. Theorem 4 shows
that for any " > 0 we can choose N� such that for N > N� we have

(6.55) sup
�2�

jmN (�)�m1(�)j < "

where m1(�) = � is the truthful declaration. This allocation will be exactly e¢ cient if we

map an agent of type � to mN (�). Therefore, we have

(6.56)
Z
uN (m

N (�); !; xN (�
M;mN (�))) � ��(d�) = max

x�2J

1

N

NX
i=1

uN (m
N (�i); !; x

�(i))

Buit from the continuity of u with respect to �, the uniform convergence of uN to u; and

the fact that jmN (�)� �j ! 0 uniformly as N !1 we have for large enough N

(6.57) For all �, juN (mN (�); !; xN (�
M;mN (�)))� uN (�; !; xN (�M;mN (�)))j < "

This in turn implies

(6.58)
Z
uN (�; !; xN (�

M;mN (�))) � ��(d�) + " � max
x�2J

1

N

NX
i=1

uN (�i; !; x
�(i))

as required.
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In order to prove that our result holds in the common value case, we will use the fact
the nonatomic equilibrium strategies, D�(p); are strictly increasing in �, the strategy set is

upper hemicontinuous, and the type distribution is nonatomic. For any M 2 B(M) let

�MN (M) =

Z
�
PrfmN (�) 2Mg��0 (d�)(6.59)

�M0 (M) =

Z
�
Prfm1(�) 2Mg��0 (d�)(6.60)

where m1(�) = D�(�) is the equilibrium declaration in the nonatomic game.

Lemma 5. �MN ! �M0 in the Kolmogorov metric.

Proof. First note that D�(p) can be represented as a set of price discontinuities, which

implies that we can takeM = [0; v]K = �. Let M(��) = f� : � � ��g be a lower countour
set. Then Kolmogorov convergence requires that for any " > 0 there exists N� so that for

all N > N� we have uniformly over sets M(��) = f� : � � ��g

(6.61) j�MN (M(��))� �M0 (M(��))j < "

Since ��0 (!) is absolutely continuous with respect to the Lebesgue measure and m
1(�) is

strictly increasing, for any " > 0 we can choose � > 0 so that

�M0 (M(�
�))� �M0 (M(�� � �)) < "(6.62)

�M0 (M(�
� + �))� �M0 (M(��)) < "(6.63)

Then choose N� su¢ ciently large that

(6.64) sup
�2�
jmN (�)�m1(�)j < �

Then we have

�MN (M(�
�)) � �M0 (M(�

� + �)) � �M0 (M(��)) + "(6.65)

�MN (M(�
�)) � �M0 (M(�

� � �)) � �MN (M(��))� "(6.66)

Together these imply j�MN (M(��))� �M0 (M(��))j < " as desired. Therefore �MN ! �M0 in

the Kolmogorov metric. �

Consider the ex post utility in the large �nite game

(6.67) uN (�; �
�; xN (�

M;mN (�)))
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From the uniform convergence of uN to u and xN to x, we have for large enough N

(6.68) ju(�; ��; x(�M;mN (�)))� uN (�; ��; xN (�M;mN (�)))j < "

4

Given continuity of u with respect to �(�) and x with respect to �(M) and the almost

sure convergence of �� ! ��0 and �
M ! �MN , for any � > 0 we can choose N su¢ ciently

large that

(6.69) ju(�; ��; x(�M;mN (�)))� u(�; ��0 ; x(�MN ;mN (�)))j < "

4

with probability at least 1 � �. From our lemma above, �MN ! �M0 in the Kolmogorov

metric which implies for N su¢ ciently large we have

(6.70) ju(�; ��0 ; x(�M0 ;mN (�)))� u(�; ��0 ; x(�MN ;mN (�)))j < "

4

with probability at least 1 � �. From the convergence of mN (�) ! m1(�) and the

continuity of u, we have

(6.71) ju(mN (�); ��0 ; x(�
M
N ;m

N (�)))� u(�; ��0 ; x(�M0 ;mN (�)))j < "

4

with probability at least 1� �. Note that

(6.72) u(mN (�); ��0 ; x(�
M
0 ;m

N (�))) = u(�; ��0 ; x(�
M
0 ; �))

Then we have putting all of these relations together that for large enough N

(6.73) ju(�; ��0 ; x(�M0 ; �))� uN (�; ��; xN (�M;mN (�)))j < "

with probability at least 1 � p. But note that this them implies for any �ltration P� of

� (0;K)�� we have

(6.74) jE
�
u(�; ��0 ; x(�

M
0 ; �))jP�

�
� E

�
uN (�; �

�; xN (�
M;mN (�)))jjP�

�
< "

with probability at least 1� p. Since the nonatomic game is informationally e¢ cient, this
immediately implies that for any ("; �) the large �nite game is informationally ("; �)-e¢ cient

for N su¢ ciently large. �


