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Abstract

I examine when and how results from the theory of repeated games hold in a model with time-
inconsistent preferences. Two results which emerge are that Nash reversion can be used to support
bene�cial cooperation whenever the sum of the discount factors is su¢ ciently large, and that
the two most well-known folk theorems hold for large classes of discount functions that have a
parameter that can be adjusted to make the future more important. I also identify conditions
for when the players always want to commit to their equilibrium strategy even though they are
ranking outcome paths inconsistently.

1 Introduction

The purpose of this paper is to examine when and how results from the theory of repeated
games hold in a model with time-inconsistent preferences which allows time-consistent exponential
discounting as a particular case. Instead of having players discount their instantaneous utility t
periods into the future with the discount factor �t; there is a discount function f such that the
players discount the value of their instantaneous utility function t periods into the future with
the discount factor f(t): The only assumption made about the discounting process is that f is
nonnegative and summable:

P1
t=1 f(t) < +1:

Time-inconsistency arises for example when the discount function is �quasi-exponential�and
f(t) = ��t:3 If � < 1; then this discount function is such that the decision maker is less willing to
postpone pleasure from today to tomorrow than from a period far into the future to the period
after that. That is, the discount rate decreases as the time before payo¤s are realized grows longer.
Experimental studies in economics often suggest that individuals behave as if they discount in this
way, and evolutionary explanations for why this may be the case have been provided by Dasgupta
and Maskin (2005) and Wärneryd (2006).

So far, most studies on how time-inconsistent players play repeatead games have focused on
the case where there is one decision maker in a game with himself. In this setting Vieille and
Weibull (2009) have studied the ability or inability of a time-inconsistent decision maker to avoid
temptation and shown that time-inconsistency can give rise to multiple equilibria with di¤erent
payo¤s even though there is only one decision maker. Also when Krusell and Smith (2003) examine
how quasi-exponential discounting a¤ects the consumption-savings problem, their main �nding is
one of indeterminacy of equilibrium savings rules.

Since time-inconsistency makes even a game with a single decision maker complicated, one
might expect that repeated games with several time-inconsistent players are not amenable to

1The paper has bene�ted greatly from the input of Jörgen Weibull and Karl Wärneryd. I also thank Eric Sjöberg
and Mark Voorneveld for helpful comments and suggestions.

2Axel.Bernergard@hhs.se
3This discount function is also often called quasi-geometric or quasi-hyperbolic. The terminology quasi-hyperbolic

emphasizes that the discount function, for some parameter values, is similar to a hyperbolic discount function. The
terminology quasi-exponential (quasi-geometric) is used to emphasize that the discount function allows exponential
(geometric) discounting as a particular case.
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analysis. Fortunately that is not the case. Chade, Prokopovych and Smith (2008) analyze a
model of repeated games with quasi-exponential discounting and are able to characterize the set
of equilibrium payo¤s. All results derived by Chade et al. apply in the more general model I
use in this paper. Chade et al. also introduce a new equilibrium concept for repeated games
with time-inconsistency. In section 4, I use this equilibrium concept to examine when the con�ict
between current and future selves of a player disappears in equilibrium.

The reason that repeated games with time-inconsistent preferences can be analyzed much in
the same way as usual is that even with time-inconsistent prefences each subgame of the in�nitely
repeated game is still identical to the game itself. This stationarity is su¢ cient to make it possible
to perform the same basic analysis as that usually done for repeated games with exponential
discounting. It is almost business as usual and for large classes of discount functions Nash reversion
and folk theorems continue to work as usual. Furthermore, the theory on discounted games
developed by Abreu (1988) does not require exponential discounting. Abreu�s results guarantee the
existence of optimal penal codes and show that any subgame perfect equilibrium outcome can be
supported by simple history independent equilibrium strategies. The stationary mentioned above
is su¢ cient for this analysis and time-consistency is not required. Abreu (1988) concludes with:
�Analogues to the theorems established here ought to appear in any model with discounting and
a �repeated�strucure.�I write down the anticipated analogues that hold with time-inconsistent
preferences in section 5.

Using subgame perfect Nash equilibrium as the solution concept I ask the following two ques-
tions: (a) When can the players use Nash reversion to support mutually bene�cial cooperation?
(b) Suppose that the values of the discount function f depend on some parameter �; what must
be assumed about the discount function f to make a folk theorem work?

The answer to the �rst question is given in proposition 2: Nash reversion can be used to
support mutually bene�cial cooperation whenever the sum of the discount factors is su¢ ciently
large.

The second questions needs to be clari�ed before any answer can be described. Loosely
speaking, standard folk theorems say that when � is close to 1, then almost any outcome is
possible in equilibrium. The question here is: when is it the case that almost any outcome is
possible equilibrium when the parameter � of the discount function is adjusted properly? This
question does not have one answer, it depends on which folk theorem that is considered and in
particular it depends on the strategies used by the players. In a subgame perfect equilibrium
it has to be optimal for a player to follow his strategy after any history of play in the previous
periods. Therefore, what needs to be assumed about the discount function to make sure that
some given strategy is a subgame perfect equilibrium will depend on the strategy.

I consider only the possibility of generalizing two simple and well-known folk theorems: one
theorem with just two players and no player-speci�c punishments, and one theorem with n players
and player-speci�c punishments. I identify for each theorem a condition for the discount function
f such that if it is satis�ed, then the folk theorem works as usual. These conditions are found
as condition 1 and condition 2 in section 3.2 and they turn out to be surprisingly simple. The
answer to question (b) I arrive at is thus: The two player folk theorem works as usual for any
discount function that satis�es condition 1; the n�player folk theorem works as usual for any
discount function that satis�es condition 2. Since exponential discounting meets both condition
1 and condition 2, the original versions of the folk theorems are implied by proposition 3 and 4
in section 3.2 which give the formal version of this answer.

The rest of this paper is organized as follows. Section 2 studies Nash reversion for the particular
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case of quasi-exponential discounting. Section 3 introduces the general model and uses it to study
Nash reversion and folk theorems. Section 4 uses a new equilibrium concept introduced by Chade,
Prokopovych and Smith (2008) to examine when the con�ict between current and future selves of
the players disappear. Section 5 states the analogues of Abreu�s (1988) results for time-inconsistent
preferences. Section 6 concludes.

2 Repeated Games with Quasi-Exponential Discounting

All conceptual di¢ culties with time-inconsistent preferences are present when the discount func-
tion f is quasi-exponential and f(t) = ��t: This section introduces a model of repeated games
with this discount function and uses it to study Nash reversion strategies. The step to general
discount functions, which is taken in the next section, will then be small.

Model and Notation. There is a strategic game G = hN; (Ai)i2N ; (ui)i2N i ; where N =
f1; : : : ; ng is a �nite set of players, Ai is the set of actions available to player i and ui : �j2NAj ! R
is a utility function describing the preferences of player i: The set A is de�ned by A = �i2NAi; and
an action pro�le a = (ai)i2N from A will be referred to as an outcome. For any i 2 N the notation
A�i is used for the set �j2NnfigAj ; and given a pro�le of actions a�i 2 A�i and an action ai 2 Ai;
(ai; a�i) denotes the outcome (aj)j2N : To ensure that all maximum and minimum values to be
de�ned are well-de�ned we assume that Ai is a compact subset of a Euclidean space and that ui
is continuous for all i 2 N:

The stage game G is repeated in�nitely many times. For each i 2 N there is a collection
(it)

1
t=0 of �i�players�. Player it controls the period t action of the i�players. Let A1 be the

collection of all sequences (at)1t=0 with a
t 2 A for all t 2 N: Elements (at)1t=0 of A1 will be referred

to as outcome paths. For each i 2 N the preferences of the i�players on A1 are described by a
collection of utility functions (Uit)1t=0: Given an outcome path (a

s)1s=0 = (a
s) from A1; the utility

of player i� is Ui� ((as)): The function Ui� is de�ned by

Ui� ((a
s)) = ui(a

� ) +

1X
t=1

��tui(a
�+t)

for all i 2 N; all � 2 N and all (as) 2 A1; where � 2 (0; 1) and � � 0 are given constants.
The solution concept adopted is that of subgame perfect equilibrium. A formal description

of histories, strategy pro�les and subgame perfect equilibrium is now provided. The notation
introduced for strategy pro�les and histories is not used until section 4, where the discussion
requires some notation for these concepts. Only the intuitive interpretation of the model discussed
in a paragraph below is required to state, discuss and prove all results in section 2 and 3.

Put A0 = f;g and let H = [1t=0At so that H is the set of histories for the repeated game
and the empty set ; represents the empty history. A strategy for player it is a description of how
player it plans to act in the game and speci�es one action for each history of play h 2 At leading
up to period t: That is, a strategy of player it is a function git : At ! Ai: A strategy pro�le is a
collection of strategies which speci�es for each i 2 N; and each t 2 N one strategy for player it:
One compact way to describe this is to de�ne a strategy pro�le as a function g : H ! A: If h 2 At;
then the i�th coordinate of g(h); written gi(h); is the action that the strategy pro�le suggest for
player it after history h: Since each player it only controls one action, a strategy pro�le g is a
subgame perfect equilibrium if and only if the following statement is true for all i 2 N , all t 2 N
and all histories h 2 At of play up to period t :
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Given that the history of play has been h; and that all other current and future players will
play as suggested by the strategy pro�le g, it is optimal for player it to also use the action that
the strategy pro�le g suggests.

Relation to the canonical model of exponential discounting. With � = 1; we get expo-
nential discounting. The preferences of the i�players are then consistent in the sense that if two
outcome paths (at) and (bt) from A1 are such that at = bt for all t < �; then player i� prefers
(at) to (bt) if and only if player i0 prefers (at) to (bt): In this case one can replace the sequence of
i�players with just player i0; and by the one-shot deviation principle for the canonical model of
exponential discounting this has no e¤ect on the analysis. Therefore, if we use subgame perfect
equilibrium as solution concept for the repeated game, then the model presented above allows the
canonical model of exponential discounting as a special case.

On the contrary, if � < 1; then it can happen that player i� prefers (at) to (bt) while player i0
ranks the outcome paths in the opposite way even though at = bt for all t < �: In this sense the
preferences of the i�players are time-inconsistent.

Interpretation. A game consists of a collection of players, strategy sets and payo¤s, with one
strategy set and one payo¤ function for each player. This is true both for a one-shot game
and a repeated game viewed as a game in its own right. There is no need to step away from
this framework to analyze repeated games with time-inconsistent preferences. Time-inconsistent
preferences become interesting only if the decision maker lacks ability to commit. If there is a
single decision maker, then the decision maker lacks the ability to commit to a plan of actions.
If there are several players, then the players lack the ability to commit to a strategy. The period
t-decision will be made in period t; and the decision maker will choose it in accordance with
the preferences that are relevant at period t: To make this explicit, this paper uses a model
with a collection fit : i 2 N; t 2 Ng of players, where player it controls the period t action of the
i�players, and where player it has the relevant preferences on outcome paths. With this model,
we are in the usual game theoretic setting: there are players, strategy sets and payo¤s, and each
player maximizes a well-de�ned utility function. Then there is no need to introduce any new
solution concept, we can stick to subgame perfect equilibrium.

2.1 Nash Reversion

For this subsection, assume that there exists a Nash equilibrium a� 2 A of the stage game. A
Nash reversion strategy is a strategy where the players agree to play the outcome path (at)1t=0 but
if in any period � a player deviates, then the stage game Nash equilibrium a� is to be played in all
future periods t = � + 1; � + 2; : : : ; no matter what happens after the deviation. Here only Nash
reversion strategies that call for players to repeat the same strategy in each period are considered.
That is, we assume that for some a 2 A the players initially agree to play at = a in each period
t. Before stating the proposition to follow, which answers the question of when this is a subgame
perfect equilibrium, it will be convenient to have a notation for the highest possible payo¤ for
player i given the actions of the other players. For each i 2 N; de�ne ûi : A! R by

ûi(a) = max
a0i2Ai

ui(a
0
i; a�i)

so that ûi(a) is the highest possible payo¤ for player i given that the other players use the actions
a�i:
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Proposition 1. The Nash reversion strategy that calls for playing a 2 A in each period is a
subgame perfect equilibrium if and only if

ui(a)(1� � + ��) � (1� �)ûi(a) + ��ui(a�)

for all i 2 N:

Proof. It is su¢ cient to show that after any history of play no player has an incentive to deviate.
Suppose we are in period � : If the play during periods 1; 2; : : : ; � � 1 has been a; then player i� is
called to play ai: Deviation gives the immediate payo¤ ûi(a) but means that the Nash equilibrium
will be played in all future periods. Hence it is optimal for player i� to conform if and only if

ui(a) +

1X
t=1

��tui(a) � ûi(a) +
1X
t=1

��tui(a
�):

Computing the sums and multiplying by 1� � gives the speci�ed condition.
If any player has deviated then the players are called to play the stage game Nash equilibrium

forever and have no incentive to deviate. �

Consider an action pro�le a 2 A that the players prefer to the Nash equilibrium: ui(a) > ui(a�)
for all i 2 N: All players are better of if it is possible to use punishment to support the play of a
instead of the Nash equilibrium a�. The following corollary answers the question of when this is
possible.

Corollary 1. Let a 2 A be such that ui(a) > ui(a�) for all i 2 N: The Nash reversion strategy
that calls for playing a 2 A in each period is a subgame perfect equilibrium if and only if

(ui(a)� ui(a�))�� � (1� �) (ûi(a)� ui(a))

for all i 2 N: Hence for any � > 0 there is a � 2 (0; 1) such that the Nash reversion strategy that
calls for playing a 2 A in each period is a subgame perfect equilibrium if � > �:

Proof. Follows from Proposition 1 and that (1� �)! 0 as � ! 1: �

So for any choice of � > 0 the conclusion that a su¢ ciently high � makes cooperation that is
bene�cial relative to a Nash equilibrium possible still holds. The value of � a¤ects the lowest
possible choice of � in Corollary 1.

To illustrate the e¤ect of � on the possibilities of cooperation in a simple setting, suppose for
a moment that the stage game has two players playing a prisoner�s dilemma with payo¤s 0; 1; 2; 3:
That is, cooporation gives both players the payo¤ 2; the Nash equilibrium gives both players
the payo¤ 1; and deviating from cooperation gives the deviator a payo¤ of 3: By Corollary 1,
cooperation can be sustained using a Nash reversion strategy precisely when

(2� 1)�� � (1� �)(3� 2);

or equivalently when

�
�

1� � � 1:

Solving the equation ��=(1 � �) = 1 for � as a function of � thus gives the lowest possible
value of � necessary to support cooperation as � = 1=(� + 1): Streich and Levy (2007) provide
an extensive discusson on the possibilities of cooperating in a prisoner�s dilemma with di¤erent
discount functions.
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3 Repeated Games with Time-Inconsistency

Model and Notation. Nothing is changed with respect to the stage gameG = hN; (Ai)i2N ; (ui)i2N i :
The following changes are made regarding the preferences of player i� on the set A1 of outcome
paths. Instead of constants � and � to describe time preferences there is a discount function
f : N! R such that the function Ui� is de�ned by

Ui� ((a
s)) = ui(a

� ) +
1X
t=1

f(t)ui(a
�+t)

for all i 2 N; all � 2 N and all (as) 2 A1:
The function f is assumed to be nonnegative and summable:

P1
t=1 f(t) < +1: The results

derived below are not sensitive to the assumption that all players discount with the same discount
function f: Analogous propositions hold when there is a collection (fi)i2N of discount functions
and the i�players discount with the discount function fi: This is discussed further in the �nal
remark of section 5.

The solution concept adopted is that of subgame perfect equilibrium.

3.1 Nash Reversion

For this subsection, assume that there exists a Nash equilibrium a� 2 A of the stage game. The
Nash reversion strategies of section 2 are just as easy to study with an arbitrary discount function
as with a quasi-exponential or exponential discount function, and we have the following result:

Proposition 2. The Nash reversion strategy that calls for playing a 2 A in each period is a
subgame perfect equilibrium if and only if

(ui(a)� ui(a�))
1X
t=1

f(t) � ûi(a)� ui(a)

for all i 2 N:

Proof. The speci�ed condition is equivalent with

ui(a) +

1X
t=1

f(t)ui(a) � ûi(a) +
1X
t=1

f(t)ui(a
�)

for all i 2 N which ensures that there is no incentive to deviate. �

Suppose that the value f(t) depends on the parameter � and write f(t;�) for the value of f at t
to denote this dependence on the parameter �: Suppose furthermore that there is a �� such that

lim
�!��

1X
t=1

f(t;�) = +1:

That is, suppose that by moving � towards �� we can make the sum
P1
t=1 f(t;�) arbitrarily large.

Then Proposition 2 shows that any outcome a 2 A that all players prefer to a� can be played
repeatedly in a subgame perfect equilibrium for some parameter values �. All that is necessary
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is that � is chosen close enough to �� so that the sum
P1
t=1 f(t;�) is large enough. The result of

Corollary 1 is a special case of this with � = � and �� = �� = 1:
The more general conclusion of Proposition 2 is that the possibilities of cooperating using

Nash reversion to support the play of a constant outcome a 2 A in each period depend only
on the sum

P1
t=1 f(t); and how f(t) varies over time is completely irrelevant. That all relevant

information is contained in the sum
P1
t=1 f(t) is a consequence of the fact that the strategy

studied is that of constant play of a given outcome with Nash reversion as punishment. With
a timevarying outcome path and other punishments the sum no longer contains all information
needed to evaluate if a strategy is a subgame perfect equilibrium. In the next subsection, where
folk theorems for general discount functions are provided, we will however see that even when
more complex strategies are used the sum of the discount factors is still an informative measure
of the players patience.

3.2 Folk Theorems

The goal of this section is to examine the possibilities of generalizing well-known folk theorems
that assume the discount function f(t) = �t to allow for more general discount functions. Two
folk theorems are considered, one where the stage game has just two players where the strategy
pro�le is such that the two players minmax each other in the punishment phase, and one theorem
for n players where the strategy pro�le has player-speci�c punishment phases and players are
rewarded for punishing another player. Before the theorems can be stated some de�nitions are
needed. For all i 2 N; let vi denote the minmax payo¤ of player i :

vi = min
a�i2A�i

max
ai2Ai

ui(ai; a�i):

An outcome a 2 A such that ui(a) > vi for all i 2 N will be called a strictly individually rational
outcome of G = hN; (Ai)i2N ; (ui)i2N i : A stage game G is usually said to allow player-speci�c
punishments if it is possible given any strictly individually rational outcome a� 2 A to �nd a
collection (a(i))i2N of strictly individually rational outcomes such that ui(a�) > ui(a(i)) and
ui(a(j)) > ui(a(i)) for all i 2 N and all j 2 Nnfig. The following two folk theorems for repeated
games with exponential discounting are simple special cases of folk theorems due to Fudenberg
and Maskin (1986) which also cover the case of correlated randomization.

Folk Theorem 1. Suppose that N = f1; 2g: Let a� be a strictly individually rational outcome
of the stage game G: Then there exists � 2 (0; 1) such that for all � 2 (�; 1) there is a subgame
perfect equilibrium of the ��discounted in�nitely repeated game of G that generates the outcome
path (at) in which at = a� for all t 2 N:

Folk Theorem 2. Let a� be a strictly individually rational outcome of the stage game G: As-
sume that there is a collection (a(i))i2N of strictly individually rational outcomes of G such that
ui(a

�) > ui(a(i)) and ui(a(j)) > ui(a(i)) for all i 2 N and all j 2 Nnfig. Then there exists
� 2 (0; 1) such that for all � 2 (�; 1) there is a subgame perfect equilibrium of the ��discounted
in�nitely repeated game of G that generates the outcome path (at) in which at = a� for all t 2 N:

The propositions show that for a given a strictly individually rational outcome a� we can �nd a
neighborhood O of 1 such that for all � 2 O \ [0; 1) there is a subgame perfect equilibrium of
the ��discounted in�nitely repeated game in which a� is played in each period. We now consider
more general discount functions. Suppose that the values of the discount function f depend on
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some parameter � which belongs to a subset 
 of RL for some L � 1: To denote this dependence,
write f(t;�) for the value of f at t: Exponential discounting occurs when f(t; �) = �t:We ask the
following question:

� When can we �nd for each strictly individually rational outcome a� 2 A an open subset O
of the parameter space 
 such that for all � 2 O repeated play of a� is a possible outcome
path in a subgame perfect equilibrium?

It is clear that for folk theorems to work, the players have to care a lot about the future. For �
discounting we have that

lim
�!1�

1X
t=1

f(t; �) = lim
�!1�

�

1� � = +1;

so that the complete future can be made arbitrarily important compared to the current period
which has weight 1. A natural guess is thus that for a folk theorem to work for an arbitrary
parameterized discount function f(t;�) we have to have for some �� that

lim
�!��

1X
t=1

f(t;�) = +1:

This guess is a good start but we need to put some additional structure on f: Exactly which
additional structure that is needed depends on the nature of the folk theorem and in particular
which strategies the players are assumed to be able to play. For the two folk theorems considered
here the two following di¤erent conditions are appropriate. Condition 1 is for a generalization of
the two player folk theorem and Condition 2 is for the n�player folk theorem.

Condition 1. There exists �� in the closure of the parameter space 
 with �� =2 
 such that

lim
�!��

f(t;�) � 1 for all t 2 N:

Condition 2. There exists �� in the closure of the parameter space 
 with �� =2 
 such that

(i) lim
�!��

P1
t=1 f(t;�) = +1;

(ii) there exists a real number r > 0 such that f(t;�) � r for all t 2 N and all � 2 
:

When comparing the two conditions it should be noted that the boundedness requirement in part
(ii) of Condition 2 is a very mild assumption. We expect this to be satis�ed with r = 1 for normal
discount functions. The conditions have the following intuitive interpretation: Condition 2 means
that the future can be made arbitrarily important; Condition 1 means not only that the future
be made arbitrarily important, but also that the players can be made to care almost as much
about any future period as they care about the current period. This interpretation emphasizes
that Condition 1 is more restrictive. When f(t; �) is close to 1 for many t; then the sum

P
f(t)

is necessarily large. This argument is formalized as Lemma 1 in the appendix which shows that
Condition 1 implies part (i) of Condition 2.

The extra structure on the discount function that Condition 1 guarantees is needed to gen-
eralize the two-player folk theorem because the two-player folk theorem does not assume that
player-speci�c punishments can be created where one player is rewarded for punishing the other
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player. Instead the players minmax each other in the punishment phase, and the only thing
stopping players from deviating in the punishment phase is the threat of an additional period of
punishment some time in the future. Condition 1 is su¢ cient for making the punishment phase
feel while having the threat of an additional punishment period at some point in the future matter
so that the threat of punishment is credible.

Proposition 3 and 4 below are generalizations of the two folk theorems above. They are
generalizations because the discount function f with f(t; �) = �t satis�es both Condition 1 and
Condition 2 with 
 = [0; 1) and �� = 1; and the only thing that is changed is that the hypothesis
of exponential discounting is replaced by a weaker hypothesis of a discount function satisfying
Condition 1 or Condition 2.

Proposition 3. Suppose that N = f1; 2g and that f satis�es Condition 1. Let a� be a strictly
individually rational outcome of the stage game G: Then there exists a neighborhood O of �� such
that for all � 2 O \
 there is a subgame perfect equilibrium of the f( � ;�)�discounted in�nitely
repeated game of G that generates the outcome path (at) in which at = a� for all t 2 N:

Proposition 4. Suppose that f satis�es Condition 2. Let a� be a strictly individually rational
outcome of the stage game G: Assume that there is a collection (a(i))i2N of strictly individually
rational outcomes of G such that ui(a�) > ui(a(i)) and ui(a(j)) > ui(a(i)) for all i 2 N and
all j 2 Nnfig. Then there exists a neighborhood O of �� such that for all � 2 O \ 
 there
is a subgame perfect equilibrium of the f( � ;�)�discounted in�nitely repeated game of G that
generates the outcome path (at) in which at = a� for all t 2 N:

Proofs. If Condition 1 is met, and if � is close to ��; then it is possible to choose T 2 N such thatPT
t=1 f(t;�) is large and f(T ;�) is close to 1: If Condition 2 is met, and if � is close to �

�; then it is
possible to choose T 2 N such that

P1
t=1 f(t;�) is large and the fraction

PT
t=1 f(t;�)=

P1
t=1 f(t;�)

lies almost anywhere on the open interval (0; 1). This is su¢ cient to construct a subgame perfect
equilibrium to support the outcome path (at) under the di¤erent hypothesises. A complete proof
for each theorem can be found in the appendix. �

These results can be applied. Suppose that we are studying players that play a game repeatedly
with any summable nonnegative discount function f whose values depend on some parameters.
We could for example have f(t) = �t; or f(t) = ��t; or f(t) = (1+�t)

�
� ; or f(t) = ��t(1+�t)

�
� ;

or any other summable nonnegative discount function. We can then check if Condition 2 is met
and if Condition 1 is met. If Condition 2 is met, then we can conclude that for some values of
the parameters almost any outcome is possible in the repeated game if the stage game allows
player-speci�c punishments. If Condition 1 is met, then we can conclude that even if the stage
game does not allow player-speci�c punishments, if there are just two players, then for some values
of the parameters almost any outcome is possible in the repeated game.

For an example of this procedure, suppose that f is quasi-exponential, f(t;�; �) = ��t: The
parameter space can be taken to be 
 = f(�; �) 2 R2 : 0 � � � 2; 0 < � < 1g: Let (��; ��) be any
point in R2 with �� 2 (0; 2] and �� = 1: Then (��; ��) is in the closure of 
; and furthermore we
have that lim(�;�)!(��;��)

P
f(t;�; �) = +1. Since part (ii) of Condition 2 is also met with r = 2;

we have a folk theorem for quasi-exponential discounting: if the stage game allows player-speci�c
punishments, then almost any outcome is possible in the repeated game when (�; �) is close to
(��; ��): To get another folk theorem, let (��; ��) be any point in R2 with �� 2 [1; 2] and �� = 1:
Then (��; ��) is in the closure of 
 and furthermore we have that lim(�;�)!(��;��) f(t;�; �) = �

� � 1
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for all t 2 N: Thus, if the stage game only has two players, then almost any outcome is possible
in the repeated game when (�; �) is close to (��; ��):

For another example of this procedure, suppose that f is hyperbolic, f(t;�; ) = (1 + �t)
�
� :

The parameter space can be taken to be 
 = f(�; ) 2 R2 : � > 0;  > �g: Let (��; �) be any
point in R2 with � = �� � 0. Then (��; �) is in the closure of 
; and furthermore we have that
lim(�;)!(��;�)

P
f(t;�; ) = +1: Since part (ii) of Condition 2 is also met with r = 1; we have

a folk theorem for hyperbolic discounting. To get another folk theorem, let (��; �) = (0; 0): Then
(��; �) is in the closure of 
 and furthermore we have that lim(�;)!(��;�) f(t;�; ) = 1 for all
t 2 N: Thus, if the stage game only has two players, then almost any outcome is possible in the
repeated game when (�; ) is close to (��; �): Arguments for the last two convergence claims are
given as Claim 1 in the appendix.

In this way Proposition 3 and 4 generate the standard folk theorems for exponential discount-
ing, and furthermore folk theorems for quasi-exponential and hyperbolic discounting. More im-
portantly, the discussion in this section illustrates that when discounting is exponential, f(t) = �t;
and when � approaches 1; then the decision maker is made more patient in two distinct ways.
Firstly, the sum

P
f(t) approaches in�nity; and secondly, f(t) tends to 1 for each t 2 N: Other

discount functions may have a parameter that can be adjusted to make the future more important
in the �rst way but not the second. The n�player folk theorem requires only the �rst type of pa-
tience, that the entire weight of the future can be made arbitrarily large compared to the current
period which has weight 1. Associated with this type of patience is a clear numerical measure of
the patience associated with the discount function f , namely the sum

P
f(t): In section 3.1 we

saw that this is also the relevant type of patience for Nash Reversion. The other type of patience,
that the weight of periods far into the future is almost as large as the weight for the current
period, has no obvious numerical measure. If f is nonincreasing, then f(1) is an upper bound on
f for t � 1; and therefore f(1) is one indicator of this type of patience. At least we know if f(1)
is small that the decision maker is not patient in this sense.

4 Time-Consistent Equilibria

Chade, Prokopovych and Smith (2008) introduce a new equilibrium concept for repeated games
with time-inconsistent preferences called sincere subgame perfect equilibrium. Sincere subgame
perfect equilibrium is the equilibrium concept that results if player i can control his period
t�action at period 0; at period 1; at period 2; : : : ; at period t � 1; and at period t: That is,
in the plainest possible english, sincere subgame perfect equilibrium is the equilibrium concept
that results if a player controls today what he is going to do tomorrow, and then he controls it
tomorrow again. In a sincere subgame perfect equilibrium, player i is allowed to evaluate the
optimality of his period � action with his current preferences at all periods t � � : In real life an
action can not be controlled at all periods t � � at the same time, so there is no obvious reason
to expect that players will play sincere subgame perfect equilibria.

However, being a sincere subgame perfect equilibrium is an interesting property of a subgame
perfect equilibrium. As noted by Chade et al., the sincere subgame perfect equilibria are those
equilbria where time-inconsistency is not an issue for any player and, given the strategies of the
other players, each player always wants to commit to his strategy. There is no con�ict between
current and future selves of any player: the players it and is want the same thing. The players
might not even notice that they are evaluating outcome paths in an inconsistent way, since they
always want to commit to their strategy anyway time-inconsistency never becomes an issue. For
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this reason I suggest that what Chade et al. call sincere subgame perfect equilibria should be
called time-consistent subgame perfect equilibria. From now on, I will only the term time-consistent
subgame perfect equilibrium.

Chade et al. �nd that if the discount function is quasi-exponential with � < 1; then not only do
time-consistent subgame perfect equilibria typically exist, but any subgame perfect equilibrium
that satis�es a certain punishment property is a time-consistent subgame perfect equilibrium
(Theorem 2, Chade et al.). Here this punishment property will be called the weak punishment
property to distinguish it from another stronger punishment property. The weak punishment
property is that a one-shot deviation never increases the discounted sum of instantaneous payo¤s
during all future periods. Chade et al. have thus identi�ed a crucial di¤erence between repeated
games with several time-inconsistent players and repeated games with only one time-inconsistent
player: with several players a strategy pro�le which the players always want to commit to can be
created by having the other players punish a deviator. In the particular case of quasi-exponential
discounting with � < 1; this force is so strong that time-inconsistency does not have to be an
issue along any equilibrium outcome path (Corollary 1, Chade et al.).

In subsection 4.2, we will see that the full force of the result in Chade et al. is a mathematical
curiosity of the quasi-exponential discount function. The quasi-exponential discount function is
the only discount function for which it is true that the weak punishment property is su¢ cient to
make the con�ict between current and future selves disappear. First, subsection 4.1 develops a
related result about the relation between subgame perfect equilibria and time-consistent subgame
perfect equilibria which applies for fewer strategy pro�les but for more general discount functions.

4.1 Punishment and Time-Consistency

The goal of this subsection is to state and discuss Proposition 5 below which provides su¢ cient
conditions on the discount function and the strategy pro�le for when the con�ict between current
and future selves of each player disappears in equilibrium. Some additional notation is required
for this section before a time-consistent subgame-perfect equilibrium can be de�ned. For all i 2 N
and all t 2 N; extend the function Uit so that it is de�ned also for strategy pro�les in the natural
way. That is, if (as) 2 A1 is the outcome path induced by the strategy pro�le g; then Uit(g) =
Uit((a

s)): A strategy pro�le g and a history h naturally de�nes a strategy pro�le gjh that describes
the behavior of the players in the game after history h: The function gjh is de�ned by setting
gjh (h0) = g(h; h0) for any h0 2 H; where (h; h0) is the history constructed by listing all outcomes
in h followed by those in h0:

De�nition. A strategy pro�le g is a time-consistent subgame perfect equilibrium if for all
histories h 2 H; the strategy pro�le gjh constitutes a Nash equilibrium in the repeated game where
the players (it)1t=0 are replaced by just one player i who controls the action of the i�players in
each period. That is, a strategy pro�le g is a time-consistent subgame perfect equilibrium if for
all i 2 N; all h 2 H and all ~gi : H ! Ai; we have that Ui0(g

jh
i ; g

jh
�i) � Ui0(~gi; g

jh
�i).

This de�nition is such that a strategy pro�le g is a time-consistent subgame perfect equilibrium
precisely when it is what Chade, Prokopovych and Smith (2008) call a sincere subgame perfect
equilibrium. The de�nition is written in a way which is intended to emphasize that the equilibrium
concept identi�es strategy pro�les where a player always wants to commit to the proposed strategy:
player i0 is happy not only with the action g

jh
i (;), but also with the complete strategy for the

repeated game described by gjhi : Any time-consistent subgame perfect equilibrium is a subgame
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perfect equilibrium, so time-consistency is a re�nement criterion for subgame perfect equilibria. If
f(t) = �t; then the converse also holds and any subgame perfect equilibrium is a time-consistent
subgame perfect equilibrium as the preferences of the i�players are then consistent.

The relevant condition which we will have to impose on the discount function is that the ratio
f(t)=f(t+1) is nonincreasing in t for t 2 N: A discount function which satis�es this property will
be called present biased.

De�nition. A discount function with f(0) = 1 is present biased if the ratio f(t)=f(t + 1) is
nonincreasing in t for t 2 N:

This de�nition is such that a discount function is present biased when the discount rate between
two adjacent periods decreases as the time before the periods are reached grows longer. This is
because if we are in period � ; then the discount rate between period � + t and � + t+1 is precisely
f(t)=f(t + 1). As mentioned in the introduction, empirical studies in economics often suggest
that individuals discount in this way and thus are less willing to postpone pleasure from today
to tomorrow than from a period far into the future to the period after that. This property is
satis�ed for example by the quasi-exponential discount function with � � 1; and the hyperbolic
discount function f(t) = (1 + �t)�=�:

Present biasedness should not be confused with impatience. That is, decreasing discount rates
should not be confused with high discount rates. When the discount rates are decreasing, then the
discount rates are initially higher than they will be later. This does not imply that the discout
rates are high on average, it doesn�t even imply that discount rates are initially high. As an
illustration of this, consider the hyperbolic discount function f(t) = (1 + �t)�=�: In section 3.2,
we saw that when (�; ) is close to (0; 0); then the sum

P
f(t) is high and furthermore f(1) is

close to 1: That is, then the discount rates are low on average and furthermore discount rates are
never high. Despite this, the discount function is present biased.

Above, f(1) was used as a measure of patience. This was discussed in section 3.2, but we can
now note that f(1) works particularly well as a measure of patience for present biased discount
functions. The reason is that when f is present biased, then f(t) � f(1)t for each t 2 N: So,
when f is present biased, then f is unambigously at least as patient as the exponential discount
function with � = f(1). This line of reasoning can also be used to show that if f( � ;�) is present
biased for each � 2 
; then Condition 1 is met if and only if lim�!�� f(1;�) = 1: A complete
argument for this claim is given as Claim 2 in the appendix.

A strategy pro�le satis�es the strong punishment property if it is true after any history of play
and for all players that a deviation does not increase the payo¤ in any future period. One way to
write exactly this, but formally, is as follows.

De�nition. The strategy pro�le g satis�es the strong punishment property if for all i 2 N;
all � 2 N and all histories h 2 A� ; if ~g is a strategy pro�le such that ~g = g on [1t=1A�+t; and
~gj(h) = gj(h) for all j 2 Nnfig; and if (at)1t=0 and (bt)1t=0 are the outcome paths in A1 induced
by gjh and ~gjh respectively, then

ui(a
t) � ui(bt)

for all t � 1:

We now have all the tools to state the main result of this section.
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Proposition 5. Suppose that the discount function f is present biased. Then any strategy
pro�le g that is a subgame perfect equilibrium and satis�es the strong punishment property is a
time-consistent subgame perfect equilibrium.

Proof. In the appendix. �

The interpretation of this is straightforward and similar to the interpretation of the result in
Theorem 2 of Chade et al. which requires a weaker punishment property but the discount function
f(t) = ��t: Because the strategy pro�le satis�es the strong punishment property, a deviation
lowers the payo¤s in all future periods. Because the discount function is present biased, the
punishment for the i�players for a deviation from player i� will be at least as bad relative to the
one period gain in period � for player it; t < �; as it is for player i� : It follows that as long as
player i� is happy with his period � action after each history, then so is player it; t < �: There is
no con�ict between current and future selves of player i in this case.

The most basic examples of strategy pro�les that satisfy the strong punishment property are
the Nash reversion strategies discussed in section 2 and 3. It follows from Proposition 5 that if
the discount function is present biased, then the equilibria found are not only subgame perfect,
they are time-consistent and the players always want to commit to the proposed strategy. The
strategy used to prove the two-player folk theorem also satis�es the strong punishment property.
Putting Proposition 3 and 5 together thus provides time-consistent subgame perfect equilbria if
the discount function satis�es Condition 1 and is present biased. The strategy pro�le used to
prove the n�player folk theorem does not generally satisfy the strong punishment property, it
does so precisely when all players prefer to punish any other player to being punished themselves.

4.2 The Weak Punishment Property and Quasi-Exponential Discounting

A strategy pro�le will be said to satisfy the weak punishment property if the discounted sum of
all future instantaneous payo¤s never increases after a deviation.4 This is weaker than the strong
punishment property that requires that the instantaneous payo¤ does not increase in any future
period after a devation. As mentioned in the introduction to this section, it is not possible to
replace the strong punishment property in Proposition 5 with the weak punishment property.
We know however from Chade, Prokopovych and Smith (2008) that with the particular discount
function f(t) = ��t; � � 1; this replacement is possible. This subsection explores the reason
for this, and it turns out that the function f(t) = ��t; � � 1; is characterized by the fact that
this replacement is possible. The result that the weak punishment property is su¢ cient to make
the con�ict between current and future selves disappear under quasi-exponential discounting is
thus not robust to even the slightest perturbation of the discounting process. Before arriving at
this result, we need the following proposition which characterizes the quasi-exponential discount
function in a more obvious way.

Proposition 6(a). Suppose that the discount function f is such that f(2) � f(1)2; and that for
all positive integers k � 1; and all real numbers xk; xk+1; if f(k)xk + f(k + 1)xk+1 � 0; then
f(k + 1)xk + f(k + 2)xk+1 � 0: Then there exists constants � 2 [0; 1] and � 2 (0; 1) such that
f(t) = ��t for all t � 1.

4For a precise de�nition, replace ui(at) � ui(b
t) for all t � 1 with

P1
t=1 f(t)ui(a

t) �
P1

t=1 f(t)ui(b
t) in the

de�nition of the strong punishment property.

13



Proposition 6(b). Suppose that f(t) = ��t for some � 2 [0; 1] and some � 2 (0; 1); and let
(xt)

1
t=0 be a bounded sequence of real numbers such that

P1
t=1 f(t)xt � 0 and

P1
t=1 f(t)xt � x0:

Then
P1
t=1 f(T + t)xt � f(T )x0 for all T 2 N:

Proof. Consider part (a) of the proposition. If f(k) = 0 for some postive integer k; then the
speci�ed property holds only if f(k0) = 0 for all positive integers k0. Assume therefore that
we are in the case where f(k) > 0 for all positive integers k: Let k � 1 be a given positive
integer. Put xk = 1=f(k); xk+1 = �1=f(k + 1): If the property is to hold, then we have to have
f(k + 1)=f(k) � f(k + 2)=f(k + 1): Put xk = �1=f(k); xk+1 = 1=f(k + 1): If the property is to
hold, then we have to have f(k + 1)=f(k) � f(k + 2)=f(k + 1): Combining the two inequalities
gives f(k + 1)=f(k) = f(k + 2)=f(k + 1): Since k � 1 was arbitrary, this holds for all k � 1: Put
� = f(2)=f(1): Then f(k) = f(1)�k�1 for all k � 1: So the discount function f satis�es f(t) = ��t
with � = f(1)=�: Since f(2)=f(1) = � � f(1); we have � � 1: That � 2 (0; 1) follows from that f
is summable:

P
f(t) < +1:

It is straightforward to verify part (b) of the proposition. �

Part (a) of Proposition 6 characterizes the quasi-exponential discount function with � � 1 because
by part (a) this discount function is the only discount function that could possibly satisfy the
speci�ed condition, and the quasi-exponential discount function with � � 1 does satisfy this
condition.

Part (b) of Proposition 6 captures exactly why the weak punishment works in a particular
way for the discount function f(t) = ��t: To see this, suppose that player iT is given the choice
between two di¤erent streams of instantaneous utilities during periods T; T + 1; : : :, say stream 1
and stream 2, and let (yt)1t=T be the stream of real numbers that you get by taking the di¤erence
between these two streams. That is, yt is the period t value of stream 1 minus the period t value
of stream 2. Put xt = yT+t for all t 2 N:

If stream 1 is the instantaneous utilities along an outcome path of a subgame perfect equilib-
rium which satis�es the weak punishment property, and if stream 2 is the stream associated with
a deviation from player iT ; then we have that

P1
t=1 f(t)xt � 0 and

P1
t=1 f(t)xt � �x0; player iT

can not increase his continuation payo¤ or his complete payo¤ by any deviation. By part (b) of
Proposition 6, this implies that

P1
t=1 f(T + t)xt � �f(T )x0: The meaning of this is that player

i0 agrees with player iT about the ranking of the streams 1 and 2. The con�ict between player
i0 and player iT disappears. This is a complete argument for half of the claim of Proposition 7
below. The other half of the proof of Proposition 7, which relies on part (a) of Proposition 6, can
be found in the appendix.

Proposition 7. Let a discount function f be given and consider the following statement: For
any stage game G, if a strategy pro�le g is a subgame perfect equilibrium of the repeated game and
satis�es the weak punishment property, then g is a time-consistent subgame perfect equilibrium.
This statement is true if and only if there exists constants � 2 [0; 1] and � 2 (0; 1) such that
f(t) = ��t for all t � 1.

Proposition 7 is the promised result: quasi-exponential discounting with � � 1 is characterized
by the fact that the con�ict between current and future selves of the decision maker disappears
as soon as the weak punishment property is satis�ed.
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5 Abreu�s Theorems for Repeated Games with Discounting

Abreu (1988) shows that although strategy pro�les allow players to make their actions contingent
on the entire history of play, much of this potential strategic complexity is redundant. Abreu
thinks of a strategy pro�le as an outcome path and punishment paths for deviations from the
outcome path or any punishment path. A simple strategy pro�le is then a strategy pro�le such
that a unilateral deviation of a given player in any period and after any history leads to the
same punishment. Therefore a simple strategy pro�le in a game with n players is completely
described by specifying n+ 1 outcome paths: one initial path and one punishment path for each
player. Abreu then establishes that optimal penal codes which give the worst possible punishment
for a player exist, and that therefore every outcome path of a subgame perfect equilibrium is
the outcome path of a subgame perfect equilibrium which is simple. We will see here that as
anticipated by Abreu, the theorems provided by Abreu really are theorems for repeated games
with discounting, and not just theorems for repeated games with exponential discounting. Before
stating the analogues of Abreu�s theorems for the present model, we go through the necessary
new concepts and notation.

De�nition. Let Q0 2 A1; and let Qi 2 A1 for i 2 N: The simple strategy pro�le �(Q0; Q1; : : : ; Qn)
speci�es: (i) play Q0 until some player deviates singly from Q0; (ii) for any j 2 N; play Qj if
the j�th player deviates singly from Qi; i = 0; 1; : : : ; n; where Qi is an ongoing previously speci�ed
path; continue with Qi if no deviations occur or if two or more players deviate simultaneously.

Examples of simple strategies are the Nash reversion strategies of section 2 and 3 and the strategies
used to prove the folk theorems of section 3.

Let AP be the subset of A1 that contains all outcome paths that are induced by some subgame
perfect equilibrium strategy pro�le. That is, AP consists of all outcome paths that are possible in
a subgame perfect equilibrium. Applying Abreu�s analysis to the present model gives the following
result.

Proposition 8. Suppose that there exists at least one subgame perfect equilibrium strategy pro�le.
Then there exists a collection (Q1; Q2; : : : ; Qn) of outcome paths from AP , called an optimal penal
code, with the following properties:

(i) For i 2 N; if (at)1t=0 = Qi; then

1X
t=0

f(t+ 1)ui(a
t) = inf

( 1X
t=0

f(t+ 1)ui(b
t) : (bt)1t=0 2 AP

)
:

(ii) Let Q 2 A1: Then Q 2 AP if and only if the simple strategy pro�le �(Q;Q1; Q2; : : : ; Qn)
is a subgame perfect equilibrium.

Proof. The proposition can be proven by following Abreu (1988) and adapting the proof to account
for time-inconsistency and an arbitrary summable discount function. The adaptation to time-
inconsistency is present when the in�mum is taken in (i) above. The in�mum which gives the worst
possible punishment for the current i�player is the in�mum of the number

P1
t=0 f(t + 1)ui(b

t)
as (bt)1t=0 varies over all subgame perfect equilibrium paths. The resulting real number is not the
lowest possible payo¤ to player i0 in a subgame perfect equilibrium or the lowest possible payo¤
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for any other i�player. It is the lowest possible equilibrium payo¤ during all future periods; that
is, all periods except the current one. A complete proof can be found in the appendix. �

The existence result in Proposition 8 is abstract in the sense that the proof does not provide any
method to construct the optimal penal codes. This lack of an explicit optimal penal code is not
caused by time-inconsistency, the same is true for exponential discounting.

Since Qi 2 AP for i 2 N; it follows from part (ii) of Proposition 8 that the simple strategy
�(Qi; Q1; Q2; : : : ; Qn) is subgame perfect for each i 2 N: Because �(Qi; Q1; Q2; : : : ; Qn) is subgame
perfect for each i 2 N , we have the following useful corollary of Proposition 8.

Corollary 2. Suppose that there exists at least one subgame perfect equilibrium strategy pro�le,
and put vi = inf

�P1
t=0 f(t+ 1)ui(b

t) : (bt)1t=0 2 AP
	
for i 2 N: Then the outcome path

�
at
�1
t=0

from A1 is a subgame perfect equilibrium path if and only if

ui(a
� ) +

1X
t=1

f(t)ui(a
�+t) � ui(bi; a��i) + vi (1)

for all i 2 N; all bi 2 Ai; and all � 2 N:

The numbers (vi)i2N associated with an optimal penal code thus describe the collection A
P of all

subgame perfect equilibrium paths through the inequality (1). This result in turn can be used to
say something about the subset of Rn which contains all payo¤s that occur in the repeated game
for the players (i0)i2N along some subgame perfect equilibrium path: this set is compact. The
argument is given as Claim 3 in the appendix. Therefore the function Ui0 which gives the payo¤
to player i0 in the repeated game can be maximized and minimized on AP : That is, for player i0
there is a most preferred and a least preferred subgame perfect equilibrium path.

Final Remark. The results derived above are not sensitive to the assumption that all players
discount with the same discount function f: Analogous propositions hold when there is a collection
(fi)i2N of discount functions and the i�players discount with the discount function fi:

In this alternative setting, the Nash Reversion result in Proposition 2 holds when f is replaced
by fi in the inequalities of the proposition. Folk theorems like those in Proposition 3 and 4 can be
constructed by requiring that (fi;
i; ��i ) meets the speci�ed condition for each i 2 N: Then there
exists a collection (Oi)i2N of sets, where Oi is an open subset of 
i, such that if �i 2 Oi for each
i 2 N; then the repeated game with discount functions (fi( � ;�i))i2N has the wanted property.
In Proposition 5 about the relation between punishment and time-consistency, the assumption
that f is present biased can be replaced with the assumption that fi is present biased for each
i 2 N: Proposition 8 and Corollary 2 hold when f is replaced with fi everywhere. The subset of
Rn which contains all payo¤s that occur in the repeated game for the players (i0)i2N along some
subgame perfect equilibrium path remains compact.

6 Conclusion

Even with time-inconsistent prefences each subgame of the in�nitely repeated game is still iden-
tical to the game itself. This stationarity is su¢ cient to make it possible to perform the same
basic analysis as that usually done for repeated games with exponential discounting. This pa-
per explores to which extent the theory of repeated games with exponential discounting can be
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generalized to a theory of repeated games with discounting. The question raised is: If something
is true for exponential discounting, is it then true for other discount functions su¢ ciently simi-
lar to exponential discounting? Given the empirical relevance of present biased non-exponential
discounting, the answer to the question is important for the applicability of the results that the
theory of repeated games has delivered.

For the topics considered here the results are as follows: Nash reversion can be used to support
mutually bene�cial cooperation whenever the sum of the discount factors is su¢ ciently large. The
two most well-known folk theorems hold not just for exponential discounting, but also for large
classes of parameterized discount functions that meet Condition 1 or Condition 2 and thus have
a parameter that can be adjusted to make the future more important in an appropriate way.
There always exists optimal penal codes, and any subgame perfect equilibrium outcome path is
the outcome path of a subgame perfect equilibrium strategy pro�le which is simple.

Hence, for these topics the answer to the question is a clear yes, but how similar to exponential
discounting the discount function has to be varies greatly. While the answer is yes for these topics,
there may well be other results which hold only for exponential discounting. The presented model
can be used to examine how sensitive results are to the assumption of exponential discounting.

In the process of deriving these results, it becomes clear that when discounting is exponential,
f(t) = �t; and when � approaches 1; then the decision maker is made more patient in two distinct
ways. Firstly, the sum

P
f(t) approaches in�nity; and secondly, f(t) tends to 1 for each t 2 N: In

general these two types of patience are distinct and other discount functions may have a parameter
that can be adjusted to make the future more important in the �rst way but not the second. This
leads to two di¤erent measures of the patience associated with a discount function,

P
f(t) and

f(1): The second measure, f(1); works particularly well for present biased discount functions.
Apart from repeating old questions in a more general setting, with time-inconsistent prefer-

ences it is also possible to ask entirely new questions like when there is a con�ict between current
and future selves of a player. If the discount function is present biased so that players are more
willing to postpone pleasure in the future than today, then the con�ict between current and future
selves disappears in an equilibrium strategy pro�le where the players punish deviatiors so that the
strong punishment property is satis�ed. Then a player always wants to commit to his strategy
and the step from time-consistent to time-inconsistent preferences becomes blurry not only for
the analyst, but also for the players.
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7 Appendix

The following lemma is used in the proof of Proposition 3.

Lemma 1. If a discounting function f satis�es Condition 1, then for any real number M there
exists T 2 N and a neighborhood O of �� with the following property: for all � 2 O \
 we have
that

PT
t=1 f(t;�) > M:

Proof. Let M be any given real number. Let T 2 N be such that T > M: There exists " > 0
such that if f(t;�) > 1� " for all t 2 f1; 2; : : : ; Tg; then

PT
t=1 f(t;�) > M: For example, choosing

" = (T �M)=T works. For each t 2 f1; 2; : : : ; Tg; let Ot be a neighborhood of �� such that
f(t;�) > 1� " for all � 2 Ot \
: Such neighborhoods exists since lim�!�� f(t;�) � 1: De�ne O
by O = \Tt=1Ot: This neighborhood has the desired property: �

Since
P1
t=1 f(t;�) �

PT
t=1 f(t;�); it follows from Lemma 1 that Condition 1 implies that

lim�!��
P1
t=1 f(t;�) = +1 as claimed.

Proof of Proposition 3. Fix a strictly individually rational action pro�le a� 2 A: Put

�v = max
i2N;a2A

ui(a)

so that �v is the highest payo¤ available to any player in the stage game. In particular, �v is at
least as good as any deviation for any player. For i = 1; 2; let p�i 2 A�i be one of the solutions to
the problem of minmaxing player i. Let p be the action pro�le p = (p�2; p�1) 2 A1 � A2: When
p is played both players are minmaxing the other player. Recall that vi is the minmax payo¤ for
player i: That is, vi is the maximum payo¤ for player i when player j plays p�i: Since a� is strictly
individually rational we thus have that

ui(a
�) > vi � ui(p)

for i = 1; 2: The strategy constructed using these actions is described by the following instructions
and the addition that play begins in Phase I.

Phase I Play a�: Remain in Phase I unless a single player deviates. If a single player deviates, go to
Phase II.

Phase II Play p in each period. Continue for T periods as long as play is always p or both players
deviate from p: After T periods go to Phase I: If a single player deviates, restart Phase II.

The rest of the proof is divided into two steps. In step 1, two conditions which are su¢ cient for
the strategy to be a subgame perfect equilibrium are derived. In step 2, the restrictions on the
discount function in Condition 1 are used to show that these conditons can be met.

Step 1. We go through each phase and give su¢ cient conditions for it to be optimal for player i
to conform to the proposed strategy. In Phase I, it is optimal for player i to conform if

ui(a
�) +

1X
t=1

f(t;�)ui(a
�) � �v +

TX
t=1

f(t;�)vi +

1X
t=T+1

f(t;�)ui(a
�);
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which can be written as
TX
t=1

f(t;�) (ui(a
�)� vi) � �v � ui(a�):

Since ui(a�)� vi > 0 for i = 1; 2; it follows that there exists a real number m1 such that if

TX
t=1

f(t;�) > m1; (2)

then it is optimal for both player 1 and player 2 to conform in Phase I.
Consider now Phase II. As both players are minmaxing each other, an optimal deviation in

this phase gives player i the current payo¤ vi. Thus in Phase II with T 0 � T periods of punishment
remaining it is optimal for player i to conform if

ui(p) +
T 0�1X
t=1

f(t;�)ui(p) +
1X
t=T 0

f(t;�)ui(a
�) � vi +

TX
t=1

f(t;�)ui(p) +
1X

t=T+1

f(t;�)ui(a
�): (3)

Since ui(p) < ui(a�); the left hand side of (3) is at least as large as

ui(p) +

T�1X
t=1

f(t;�)ui(p) +

1X
t=T

f(t;�)ui(a
�):

Thus (3) is satis�ed if
ui(p)� vi + f(T ;�) (ui(a�)� ui(p)) � 0:

Since ui(a�)� vi > 0 for i = 1; 2; it follows that there exists a real number m2 2 (0; 1) such that if

f(T ;�) > m2; (4)

then it is optimal for both player 1 and player 2 to conform in Phase II. The conclusion from this
step is that if T and � are such that (2) and (4) hold; then the proposed strategy is a subgame
perfect equilibrium. For the next step we will need only that m2 < 1:

Step 2. To complete the proof, we have to show that it is possible to �nd a neighborhood O of
�� with the following property: for each � 2 O \ 
 there exists T� 2 N such that with T = T�;
(2) and (4) hold.

By Lemma 1 there is an integer T and a neighborhood O0 of �� such that for each � 2 O0\
 we
have that

PT
t=1 f(t;�) > m1: Let O be a neighborhood of �� that is a subset of O0 and such that

f(T ;�) > m2 for all � 2 O \ 
: Such a neighborhood O exists since lim�!�� f(T ;�) � 1 > m2:
The constructed neighborhood O of �� has the required properties and for all � 2 O \
 we may
set T� = T:

To see this, let � 2 O \ 
. Since O is a subset of O0; we have that
PT
t=1 f(t;�) > m1: Also

O was chosen such that we have f(T ;�) > m2: That is, (2) and (4) are satis�ed. �

The following lemmas are used in the proof of Proposition 4 below.

Lemma 2. If a discounting function f satis�es Condition 2, then for all " > 0 there exists a neigh-
borhood O of �� such that for all � 2 O\
 and all t 2 N we have that f(t;�)=

P1
s=1 f(s;�) < ":
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Proof. By (i) there is a neighborhood O of �� such that
P1
s=1 f(s;�) > r=" for all � 2 O \ 
 .

Hence, by (ii), we have that f(t;�)=
P1
s=1 f(s;�) < r"=r = " for all t 2 N and all � 2 O \
: �

Lemma 3. If a discounting function f satis�es Condition 2, then for all � 2 (0; 1) and all " > 0
there exists a neighborhood O of �� with the following property: for each � 2 O \
 there exists
T� 2 N such that

�� " <
PT�
t=1 f(t;�)P1
t=1 f(t;�)

� �:

Proof. By Lemma 2 there is a neighborhood O of �� such that f(t;�)=
P1
s=1 f(s;�) < minf�; "g

for all � 2 O \ 
 and all t 2 N: This neighborhood has the desired property.
To see this, �x an arbitrary � 2 O \ 
: We have that

f(t;�)P1
s=1 f(s;�)

� �

for all t 2 N; so in particular this holds with t = 1: Hence there exists at least one T 2 N such
that PT

t=1 f(t;�)P1
t=1 f(t;�)

� �; (5)

namely T = 1. Since � < 1; we have that

TX
t=1

f(t;�) > �

1X
t=1

f(t;�)

for all T su¢ cient large. Hence it is possible to de�ne T� as the largest positive integer such that
(5) is satis�ed with T = T�: ThenPT�+1

t=1 f(t;�)P1
t=1 f(t;�)

=

PT�
t=1 f(t;�)P1
t=1 f(t;�)

+
f(T� + 1; �)P1
t=1 f(t;�)

> �

which, since f(T� + 1; �)=
P1
t=1 f(t;�) < "; implies thatPT�

t=1 f(t;�)P1
t=1 f(t;�)

> �� ": �

Lemma 3 shows that if Condition 2 is satis�ed, and if � is close to ��; then it is possible to place
the fraction PT

t=1 f(t;�)P1
t=1 f(t;�)

almost anywhere on the interval (0; 1) by choosing T appropriately. In our application T is the
length of the punishment phase and Lemma 3 shows that the fraction of the sum of the discount
factors that belong to the punishment phase can be chosen almost arbitrarily from the interval
(0; 1):

Proof of Proposition 4. Let a� 2 A be a strictly individually rational outcome of G: Assume
that there is a collection (a(i))i2N of strictly individually rational outcomes of G such that for all
i 2 N and all j 2 Nnfig we have that ui(a�) > ui(a(i)) and ui(a(j)) > ui(a(i)). Put

�v = max
i2N;a2A

ui(a)
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so that �v is the highest payo¤ available to any player in the stage game. In particular, �v is at least
as good as any deviation for any player. For any i 2 N; let p�i(i) 2 A�i be one of the solutions
to the problem of minmaxing player i. Let pi(i) be a best reply of player i to p�i(i); and write
p(i) = (pi(i); p�i(i)): The outcomes (a(i); p(i))i2N and a� are such that

ui(a
�) > ui(a(i)) > ui(p(i)) = vi; and

ui(a(j)) > ui(a(i)) > ui(p(i)) = vi;

for all i 2 N and all j 2 Nnfig:
The strategy pro�le constructed using the outcomes a�; (a(i))i2N and (p(i))i2N is described

by the following instructions and the addition that play begins in Phase I.

Phase I Play a�: Remain in Phase I unless a single player deviates. If a single player j deviates, go
to Phase IIj :

Phase IIj Play p(j) in each period. Continue for T periods as long as play is always p(j) or at least
two players deviate from p(j): After T periods go to Phase IIIj : If a single player i deviates,
go to Phase IIi:

Phase IIIj Play a(j): Remain in Phase IIIj unless a single player deviates. If a single player i deviates
go to Phase IIi:

This means that the players begin by playing a�: If player j deviates during any phase, then a
punisment phase begins where the deviator j is punished for T periods with his minmax payo¤.
If there are no deviations during the punishment phase, then a punisher i 2 Nnfjg gets rewarded
for not deviating with ui(a(j)) > ui(a(i)):

The rest of the proof is divided into two steps. In step 1, two conditions which are su¢ cient for
the strategy to be a subgame perfect equilibrium are derived. In step 2, the restrictions on the
discount function in Condition 2 are used to show that these conditons can be met.

Step 1. We go through each phase and give su¢ cient conditions for it to be optimal for player i
to conform to the proposed strategy. In Phase I it is optimal for player i to conform if

ui(a
�) +

1X
t=1

f(t;�)ui(a
�) � �v +

TX
t=1

f(t;�)vi +

1X
t=T+1

f(t;�)ui(a(i)): (6)

To rewrite this expression on a form that will be useful later, de�ne M and � by

M(�) =

1X
t=1

f(t;�);

�(T; �) =

PT
t=1 f(t;�)P1
t=1 f(t;�)

;

so that M is the total sum of the discount factors whereas � gives the proportion of the sum of
the discount factors that belongs to the �rst T periods. Then, since ui(a�) > ui(a(i)); (6) holds if

ui(a
�)� �v

M(�)
+ �(T; �) � [ui(a�)� vi] � 0: (7)
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In Phase IIIj with i 6= j it is optimal for player i to conform if

ui(a(j))� �v
M(�)

+ �(T; �) � [ui(a(j))� vi] + (1� �(T; �)) � [ui(a(j))� ui(a(i))] � 0: (8)

In Phase IIIi it is optimal for player i to conform if

ui(a(i))� �v
M(�)

+ �(T; �) � [ui(a(i))� vi] � 0: (9)

Since ui(a�) > ui(a(i)) and ui(a(j)) > ui(a(i)) for all i 2 N and all j 2 Nnfig; we have that (9)
implies (8) and (7) so we may forget about (8) and (7). Since ui(a(i)) is strictly greater than vi
for all i 2 N; it follows that there exists real numbers m1 and m2; with m2 > 0; such that if

m1

M(�)
+ �(T; �) �m2 > 0; (10)

then it is optimal for all players i 2 N to conform in Phase I and Phase IIIj for all j 2 N: The
number m2 could for example be taken as the smallest of the �nitely many positive numbers
ui(a(i))� vi when i varies over N: Similarly m1 could be taken as the minimum of ui(a(i))� �v as
i varies over N:

It remains to consider the punishment phase, Phase II. It is clear that for the player being
punished there is no incentive to deviate: deviating does not raise the payo¤ in any period.
Consider therefore Phase IIj with j 6= i where player i is punishing player j and suppose that
there are T 0 � T periods of punisment left. Conforming is optimal for player i if

ui(p(j)) +
T 0�1X
t=1

f(t;�)ui(p(j)) +
1X
t=T 0

f(t;�)ui(a(j)) � �v +
TX
t=1

f(t;�)vi +
1X

t=T+1

f(t)ui(a(i)): (11)

The left hand side of (11) is larger than

ui(p(j)) +

TX
t=1

f(t;�)minfui(p(j)); ui(a(j))g+
1X

t=T+1

f(t)ui(a(j)):

Hence (11) holds if

ui(p(j))� �v
M(�)

+�(T; �)�[minfui(p(j)); ui(a(j))g � vi]+(1� �(T; �))�[ui(a(j))� ui(a(i))] � 0: (12)

Since ui(a(j)) � ui(a(i)) > 0 for all i 2 N and all j 2 Nnfig; it follows that there exists real
numbers m3;m4 and m5; with m5 > 0; such that if

m3

M(�)
+ �(T; �) �m4 + (1� �(T; �)) �m5 > 0; (13)

then it is optimal for all players i 2 N to conform in Phase IIj for all j 2 N: The number m5

could for example be taken as the smallest of the �nitely many positive numbers ui(a(j))�ui(a(i))
where i varies over N and j varies over Nnfig: The conclusion from this step is that if � and T
are such that (10) and (13) hold; then the proposed strategy is a subgame perfect equilibrium.
For the next step we will need only that m2 > 0 and m5 > 0:
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Step 2. To complete the proof, we have to show that it is possible to �nd a neighborhood O of
�� with the following property: for each � 2 O \ 
 there exists T� 2 N such that with T = T�
(10) and (13) do hold: Let � 2 (0; 1) be such that

�0 �m4 + (1� �0) �m5 > 0

for all �0 2 [�=2; �]: Since m5 > 0; all that is required is that � is chosen small enough. Since the
interval [�=2; �] is closed, the function

�0 7! �0 �m4 + (1� �0) �m5

can be minimzed on [�=2; �]: Let this minimum, which is strictly greater than 0; be achieved
at �� 2 [�=2; �]: Recall that M(�) =

P1
t=1 f(t;�): By part (i) of Condition 2, we have that

lim�!��
P1
t=1 f(t;�) = +1: Since m2 > 0 and �� �m4 + (1 � ��) �m5 > 0; it follows that there

exists a neighborhood O0 of �� such that
m1

M(�)
+
�

2
�m2 > 0;

m3

M(�)
+ �� �m4 + (1� ��) �m5 > 0;

for all � 2 O0 \ 
: This neighborhood O0 of �� is such that
m1

M(�)
+ �0 �m2 > 0; (14)

m3

M(�)
+ �0 �m4 + (1� �0) �m5 > 0; (15)

for all � 2 O0 \ 
 and all �0 2 [�=2; �]: By Lemma 3, there exists a neighborhood O00 of �� with
the following property: for each � 2 O00 \ 
 there exists T� 2 N such that

�

2
<

PT�
t=1 f(t;�)P1
t=1 f(t;�)

= �(�; T�) � �:

Put O = O0 \ O00: This neighborhood has the desired property.
To see this, �x any � 2 O\
: Since O is a subset of O00; we can �nd an integer T� such that

�(�; T�) 2 [�=2; �]: Since O is a subset of O0; the inequalities (14) and (15) are satis�ed for all
�0 2 [�=2; �]: Then in particular they are satis�ed with �0 = �(�; T�): That is, (10) and (13) do
hold with T = T�. �

Proof of Proposition 5. Suppose that the discount function f is present biased. Assume for a
contradiction that ~g is a strategy pro�le that is a subgame perfect equilibrium and satis�es the
strong punishment property, but ~g is not a time-consistent subgame perfect equilibrium. Then
there exists some history ~h 2 H such that ~gj~h is not a Nash equilibrium of the repeated game
with just the players fi0 : i 2 Ng: Put g = ~gj

~h : Since g is not a Nash equilibrium of the repeated
game with players fi0 : i 2 Ng, there exists some i 2 N and some g0i : H ! Ai such that
Ui0 (gi; g�i) < Ui0(g0i; g�i): For each k 2 N; de�ne gki by

gki (h) =

�
g0i(h) if h 2

Sk
t=0A

t;
gi(h) if h 2

S1
t=k+1A

t;
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so that gki agrees with g
0
i for small histories and agrees with gi for large histories. Since ui is

continuous and Ai is compact, ui is bounded. Thus there exists a constant M such that���Ui0(g0i; g�i)� Ui0(gki ; g�i)��� �M 1X
t=k+1

f(t): (16)

Since f is summable,
P1
t=k+1 f(t)! 0 as k !1; and thus it follows from (16) and Ui0 (gi; g�i) <

Ui0(g
0
i; g�i) that Ui0 (gi; g�i) < Ui0(g

k
i ; g�i) for all k su¢ ciently large. Fix an integer k such that

Ui0 (gi; g�i) < Ui0(g
k
i ; g�i): Let (a

t) 2 A1 be the outcome path induced by the strategy pro�le
(gk�1i ; g�i) and let (bt) 2 A1 be the outcome path induced by the strategy pro�le (gki ; g�i): Put
h = (at)k�1t=0 = (b

t)k�1t=0 : Since g is a subgame perfect equilibrium, player ik can not improve upon
g by any deviation after history h. Thus

Uik(g
k�1
i ; g�i) = ui(a

k) +
1X
t=1

f(t)ui(a
k+t) � ui(bk) +

1X
t=1

f(t)ui(b
k+t) = Uik(g

k
i ; g�i): (17)

We have that (gk�1i ; g�i)jh = gh; and that (gki ; g�i) = g on [1t=1Ak+t: Since g satis�es the strong
punishment property, it follows that ui

�
ak+t

�
� ui(bk+t) for all t � 1: Since f is present biased,

an induction argument shows that f(k)f(t) � f(k+ t) for all t � 1: Since ui
�
ak+t

�
�ui(bk+t) � 0

for all t � 1; it follows from this and (17) that

f(k)ui(a
k) +

1X
t=1

f(k + t)ui(a
k+t) � f(k)ui(bk) +

1X
t=1

f(k + t)ui(b
k+t):

The left hand side of this equality gives the payo¤ to player i0 during periods t = k; k+1; : : : ; for
the strategy pro�le (gk�1i ; g�i); and the right hand side gives the payo¤ to player i0 during periods
t = k; k + 1; : : : ; for the strategy pro�le (gki ; g�i): Thus, since the pro�les agree on histories of
length smaller than k and (at)k�1t=0 = (b

t)k�1t=0 ; we have that Ui0(g
k�1
i ; g�i) � Ui0

�
gki ; g�i

�
:

Since g is a subgame perfect equilibrium, none of the players (it)k�1t=0 can improve upon g by
any deviation. Repeating the same argument therefore gives the chain of inequalities

Ui0 (gi; g�i) � Ui0
�
g0i ; g�i

�
� � � � � Ui0(gk�2i ; g�i) � Ui0(gk�1i ; g�i) � Ui0(gki ; g�i)

which contradicts that Ui0 (gi; g�i) < Ui0(gki ; g�i): �

Proof of Proposition 7. From Chade et al. (2008), or the discussion in the paragraph preceeding
Proposition 7, we know that if f satis�es f(t) = ��t for some � 2 [0; 1] and some � 2 (0; 1); then
the statement is true.

Suppose that f does not satisfy f(t) = ��t for some � 2 [0; 1] and some � 2 (0; 1): By
Proposition 6(a), we either have f(2) < f(1)2; or there exists k � 1 and real numbers xk; xk+1
such that f(k)xk + f(k + 1)xk+1 � 0 and f(k + 1)xk + f(k + 2)xk+1 < 0:

In the �rst case, f(2) < f(1)2; consider the streams x = (0; 0; 1; 0; 0; : : :) and y = (0; f(1); 0; 0; : : :)
of instantaneous utilities for the 1�players. Player 10 gets the payo¤ f(2) for the x�stream, and
the payo¤ f(1)2 for the y�stream, so he strictly preferes the y�stream. Player 11 gets the payo¤
f(1) for the x�stream, and the payo¤ f(1) for the y�stream, so he is indi¤erent. Suppose that
there exists a subgame perfect equilibrium strategy pro�le where player 11 is supposed to choose
the x�stream over the y�stream. A deviation from player 11 would change the continuation
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payo¤ from f(1) to 0; so the strategy pro�le satis�es the weak punishment property. Player 11 is
happy with choosing the x�stream over the y�stream. Player 10 on the other hand would like to
reverse this choice, so the strategy pro�le is not a time-consistent subgame perfect equilibrium.

In the second case, let k � 2 be a positive integer, and let x = (xt)
1
t=0 be a sequence of

real numbers such that xt = 0 for all t except t = k and t = k + 1;
P1
t=1 f(t)xt+1 � 0; andP1

t=1 f(t)xt < 0. Suppose that there exists a subgame perfect equilibrium strategy pro�le where
player 11 is supposed to choose the stream x of instantaneous utilities for the 1�players over a
stream of zeros in each period. A deviation from player 11 would change the continuation payo¤
from

P1
t=1 f(t)xt+1 � 0 to 0; so the strategy pro�le satis�es the weak punishment property.

Player 11 is happy with choosing the x�stream over a stream of zeros. Player 10 on the other
hand would like to reverse this choice because

P1
t=1 f(t)xt < 0; so the strategy pro�le is not a

time-consistent subgame perfect equilibrium.
It remains only to construct a stage game G and a subgame perfect equilibrium strategy

pro�le where player 11 has the choice between two given streams, and where all other 1�players
are powerless. This can be done by letting the stage game have two players, where player 2 is
indi¤erent between all outcomes of the stage game and can in e¤ect control the instantaneous
payo¤s available to player 1 in the stage game in each period. The actions of player 2 in a subgame
perfect equilibrium can then be made contingent on the action of player 11 but una¤ected by the
actions of all other 1�players. �

Notation for the proof of Proposition 8. Let � denote the collection of all strategy pro�les
for the repeated game. Let �p � � denote the collection of all subgame perfect equilibrium
strategy pro�les. Given a strategy pro�le g 2 �; let Q(g) 2 A1 be the outcome path induced
by g: Finally, let AP be the subset of A1 that contains all outcome paths (at)1t=0 such that
(at) = Q(g) for some g 2 �p: That is, AP contains all outcome paths that are subgame perfect
equilibrium paths.

The following lemmas are used in the proof of Proposition 8.

Lemma 4. Put vi = inf
�P1

t=0 f(t+ 1)ui(b
t) : (bt)1t=0 2 AP

	
for all i 2 N: Suppose (at) 2 AP .

Then for all � 2 N; all i 2 N; and all ~ai 2 Ai;

ui(a
� ) +

1X
t=1

f(t)ui(a
�+t) � ui(~ai; a��i) + vi: (18)

Proof. Let the strategy pro�le g 2 �P be such that Q(g) = (at); and let (bt) 2 A1 be the
punishment path speci�ed by g for a deviation of player i� from a�i to ~ai 2 A after history�
at
���1
t=0

: Then
P1
t=0 f(t+ 1)ui(b

t) � vi by de�nition of vi: Suppose for a contradiciton that (18)
does not hold. Then

ui(a
� ) +

1X
t=1

f(t)ui(a
�+t) < ui(~ai; a

�
�i) +

1X
t=0

f(t+ 1)ui(b
t);

and hence player i� has a pro�table deviation from g. This contradicts g 2 �P : �

Lemma 5. Let " > 0 and i 2 N be given. There exists T 2 N such that�����
1X
t=T

f(t)ui(a
t)�

1X
t=T

f(t)ui(b
t)

����� < "
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for all outcome paths (at)1t=0; (b
t)1t=0 from A1:

Proof. Since ui is bounded, and since f is nonnegative, there is a constant M such that�����
1X
t=T

f(t)ui(a
t)�

1X
t=T

f(t)ui(b
t)

����� �M
1X
t=T

f(t)

for all T 2 N and all (at); (bt) from A1: Since f is summable, we also have that
P1
t=T f(t) < "=M

for all T large enough. �

Since ui is continuous, Lemma 5 shows that for any two outcome paths (at); (bt) from A1; if at is
close to bt for all t < T; then the number

��P1
t=1 f(t)ui(a

t)�
P1
t=1 f(t)ui(b

t)
�� is small no matter

how far apart at and bt are for t � T: This is how Lemma 5 is used in the proof of Proposition 8 to
show that various function from A1 to R are continuous when A1 is endowed with the product
topology.

Proof of part (i) of Proposition 8. The proof follows Abreu (1988) with adaptations to �t the
present model with time-inconsistency of an unspeci�ed form.

Step 1 (De�ning Qi for i 2 N). Fix some i 2 N: Since AP is nonempty, and since ui is
bounded, the number vi = inf

�P1
t=0 f(t+ 1)ui(b

t) : (bt)1t=0 2 AP
	
is a well-de�ned real number.

De�ne the function v : A1 ! R by

(at)1t=0 7!
1X
t=0

f(t+ 1)ui(a
t):

Let (Q�i )
1
�=0 be such that Q

�
i 2 AP for all � 2 N and lim�!1 v(Q

�
i ) = vi. Let A

1 be endowed
with the product topology. By Tychono¤�s theorem, A1 is compact since A is compact, and
it follows that the sequence (Q�i ) in A

1 has a convergent subsequence. Assume without loss of
generality that (Q�i ) converges. By Lemma 5, the function v is continuous. Put Qi = lim�!1Q

�
i :

If (at) = Qi; then it follows from lim�!1 v(Q
�
i ) = vi and continuity of v that

P1
t=0 f(t+1)ui(a

t) =
v(Qi) = vi:

Step 2 (�(Qi; Q1; Q2: : : ; Qn) 2 �
P for i 2 N). Suppose �(Qi; Q1; Q2; : : : ; Qn) =2 �P for some

i 2 N: Then there is some � 2 N; some j 2 N and some ~aj 2 Aj such that for player j� it is
pro�table to deviate to ~aj after some history h 2 A� : Let k 2 N be such that after the history h;
the simple strategy pro�le �(Qi; Q1; Q2; : : : ; Qn) proscribes play along the outcome path Qk; and
let (at) = Qk: Then the pro�table deviation for player j� means that

uj(a
s) +

1X
t=1

f(t)uj(a
s+t) < uj(~aj ; a

s
�j) + vj (19)

for some s 2 N: The number s indicates how far into the outcome path Qk that play is when
player j� deviates. By Lemma 5, the function

A1 ! R

(bt)1t=0 7! uj(b
s) +

1X
t=1

f(t)uj(b
s+t)� uj(~aj ; bs�j)
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is continuous, and since (at) = lim�!1Q
�
k; it therefore follows from (19) that if � is large enough,

and if Q�k = (b
t); then

uj(b
s) +

1X
t=1

f(t)uj(b
s+t) < uj(~aj ; b

s
�j) + vj : (20)

By Lemma 4, the inequality (20) contradicts that Q�k = (b
t) 2 AP :

Step 3 (Conclusion). By step 2, for the outcome paths (Q1; Q2; : : : ; Qn) de�ned in step 1 we
have that �(Qi; Q1; Q2; : : : ; Qn) is subgame perfect for i 2 N: Hence Qi 2 AP : Also by step 1, if
(at) = Qi; then

P1
t=0 f(t+ 1)ui(a

t) = vi. Thus the collection (Q1; Q2; : : : ; Qn) of outcome paths
does satisfy property (i) of Proposition 6. �

Proof of part (ii) of Proposition 8. Let (Q1; Q2; : : : ; Qn) be de�ned as in step 1 above. If
�(Q;Q1; Q2 : : : ; Qn) is a subgame perfect equilibrium, then Q is the outcome path of a sub-
game perfect equilibrium. To prove the converse, suppose that (at) = Q is a subgame perfect
equilibrium path. Then by Lemma 4, it is true for all � 2 N; all i 2 N; and all ~ai 2 Ai that

ui(a
� ) +

1X
t=1

f(t)ui(a
�+t) � ui(~ai; a��i) + vi:

Hence player i� does not wish to deviate from a�i if the punishment for this will be vi: Since,
by Step 2 above, we also have that �(Qi; Q1; Q2 : : : ; Qn) is a subgame perfect equilibrium for all
i 2 N , it follows that �(Q;Q1; : : : ; Qn) is a subgame perfect equilibrium. �

Claim 1. Put 
 = f(�; ) 2 R2 : � > 0;  > �g; and let f : N � 
 ! R be de�ned by
f(t;�; ) = (1 + �t)�=�: Then for any (��; �) 2 R2 with �� � 0 and � = ��; we have that
lim(�;)!(��;�)

P
f(t;�; ) = +1: If �� = � = 0; then also lim(�;)!(��;�) f(t;�; ) = 1 for all

t 2 N:

Proof. Suppose that �� = � > 0; and let M be a given real number. There exists x > 1 and
y > �� such that

P1
t=1

1
(1+yt)x

> M: There also exists a neighborhood O of (��; �) such that if
(�; ) 2 O \ 
; then =� 2 (1; x) and � < y: Hence

P1
t=1 f(t;�; ) > M for all (�; ) 2 O \ 
;

and thus lim(�;)!(��;�)
P
f(t;�; ) = +1:

Suppose that �� = � = 0 and �x any t � 1: Let " > 0 be given. Let x > 0 be such that e�xt >
1�". Since limz!0(1+z)

1
z = e; we have that lim�!0 f(t;�; x) = e�xt > 1�": Let O be a neighbor-

hood of (��; �) such that if (�; ) 2 O\
; then  < x and f(t;�; x) > 1�2": This neighborhood
O is such that if (�; ) 2 O \ 
; then f(t;�; ) > 1 � 2": Hence lim(�;)!(��;�) f(t;�; ) = 1:
Now un�x t: By Lemma 1, it follows that also lim(�;)!(��;�)

P
f(t;�; ) = +1. �

Claim 2. Let �� belong to the closure of 
 and satisfy �� =2 
; and let f : N� 
 ! R be such
that f( � ;�) is a present biased discount function for each � 2 
: Then Condition 1 is met by f
and �� if and only if lim�!�� f(1;�) = 1:

Proof. Since f( � ;�) is present biased for each � 2 
; the function f has to be bounded from
above by 1 on N � 
: Otherwise there is some � 2 
 such that the discount function f( � ;�) is
not summable. Hence, if Condition 1 is met by f; then lim�!�� f(1;�) = 1: For the converse
statement, suppose that lim�!�� f(1;�) = 1: Fix any t � 1; and let " > 0 be given. Let � 2 (0; 1)
be such that �t > 1 � ": Since lim�!�� f(1;�) = 1; there is a neighborhood O of �� such that
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f(1; �) > � for all � 2 O \ 
: Since f( � ;�) is present biased for all � 2 
, we have that
f(t;�) � f(1;�)t for all � 2 
: Hence f(t;�) � f(1;�)t > �t > 1� " for all � 2 O \ 
; and thus
lim�!�� f(t;�) = 1: �

Claim 3. Let U0 : A1 ! Rn be the combined payo¤ function for the players (i0)i2N ; that is, let
Ui0 be the i�th coordinate function of U0 for i = 1; : : : ; n: Then U0(AP ) is a compact subset of
Rn:

Proof. Endow A1 with the product topology. We �rst establish that A1nAP is an open subset
of A1: Let (at) 2 A1 be such that (at) =2 AP : By Corollary 2 we have that

ui(a
� ) +

1X
t=1

f(t)ui(a
�+t) < ui(~ai; a

�
�i) + vi (21)

for some i 2 N; some ~ai 2 Ai; and some � 2 N: By Lemma 5, there then exists a neighborhood
O of (at) such that (21) holds when (at) is replaced by any (bt) 2 O. Thus, by Corollary 2, if
(bt) 2 O; then (bt) =2 AP : Hence A1nAP is open.

Since A1nAP is open, AP is closed. Since A1 is compact, it follows that AP is compact. By
Lemma 5, U0 is continuous. Since AP is compact and U0 is continuous, U0(AP ) is compact. �
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