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Abstract

We characterize subgame perfect pure strategy equilibrium paths in discounted
supergames with perfect monitoring. It is shown that all the equilibrium paths
are generated by fragments called elementary subpaths. When there are finitely
many elementary subpaths, all the equilibrium paths are represented by a directed
multigraph. Moreover, in that case the set of equilibrium payoffs is a graph directed
self-affine set. The Hausdorff dimension of the payoff set is discussed.
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1 Introduction

Repeated games provide the most elementary setting for analyzing dynamic
interactions. We consider the case where a stage game is repeated infinitely
many times, players discount the future payoffs, observe perfectly each others’
actions, and use pure strategies. These games have usually enormously rich
sets of equilibrium strategies, which is generally thought to imply that the
outcomes are hard to predict. Contrary to this conclusion, we show that all
the outcome paths can be quite easily generated from a collection of subpaths.
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Our approach relies on the characterization of subgame perfect equilibrium
(SPE) payoffs by Abreu et al. (1986, 1990), hereafter APS. The APS theorem
tells that SPE payoffs are a fixed-point of a particular iterated function system.
The result holds for games with both imperfect and perfect monitoring, for
the latter case see Cronshaw and Luenberger (1994). Cronshaw (1997) and
Judd et al. (2003) point out that the APS characterization is similar to the
Bellman equation in dynamic programming. To continue this analogue, our
approach is similar to the Euler equation: we proceed to equilibrium paths
from equilibrium payoffs.

Our main result is that equilibrium paths are completely characterized by a
collection of fragments or subpaths of them. Moreover, we show how these
fragments, called elementary subpaths, can be found without knowledge on
the whole set of equilibrium payoffs. The equilibrium paths are inherently
related to payoffs: we shall observe that the payoff set is a sub-self-affine set
in the sense of Käenmäki and Vilppolainen (2009), i.e., a particular fractal.
Furthermore, when there are only finitely many elementary subpaths, the set
is a graph-directed self-affine set. Consequently, it possible to analyze the
Hausdorff dimension of the payoff set using tools developed for this kind of
fractals.

The phenomenon that the set of equilibrium payoffs behaves in a rather com-
plex manner is not completely new. Mailath et al. (2002) have analyzed pure
strategy equilibria in repeated prisoners’ dilemma using the approach of Abreu
et al. (1986, 1990), and they have observed that there are discount factors for
which maximum efficient payoff is not an equilibrium. We shall consider pris-
oners’ dilemma as an example. Recently, Salonen and Vartiainen (2008) have
demonstrated that the set of payoffs in a simple decision process can be highly
complex, containing holes and caves. We offer a more comprehensive view to
the complexities of payoffs in supergames: when the discount factors vary,
the elementary subpaths change, which affects the properties of the iterated
function system that generates the payoffs.

To clarify the approach of the paper let us consider a two-player game in which
a and b are two action profiles. The common discount factor is δ. If we know
that the SPE payoffs are V ∗ ⊂ R

2, we can determine whether it is possible to
play the subpath ab as a part of any equilibrium path. First, let us observe
that there is a set of possible continuation payoffs for b, i.e., payoffs in V ∗ that
can follow b on an equilibrium path. Let Cb(V

∗) ⊆ V ∗ denote this set. We
shall later define the possible continuation payoffs more formally.

If any path starting with ab and followed by a payoff v ∈ Cb(V
∗) yields a

payoff (1 − δ)u(b) + δv ∈ Ca(V
∗), where u(b) ∈ R

2 is the vector of payoffs
from action profile b, then any equilibrium path beginning with b can follow
ab. By picking any initial action profile we can define this kind of fragments,
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or subpaths, which can belong to equilibrium paths. This leads to the set of
subpaths that we call an elementary set. All the equilibrium paths can be
generated by combining the subpaths of the elementary set.

When the elementary set consists of finitely many subpaths, then all equi-
librium paths are represented by a directed multigraph. For example, if the
elementary paths are aba, abb, ba, bb, then the equilibrium paths are obtained
from the multidigraph in Figure 1.
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ba bb
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(a) Tree (b) Multidigraph

Figure 1. An example of elementary subpaths as a tree and a multidigraph presen-
tation.

The symbol ∅ and the arcs starting from it denote that we can start with
either playing a or b. Moreover, by playing b after a we get to node b after
which we can either play b again or aa. Each arc on the graph corresponds to
a subpath that is played after action profile indicated by the current node.

The multidigraph presentation can be used in creating all the possible equi-
librium payoffs. Namely, each action profile corresponds to an affine mapping.
For example, if δ is the common discount factor, a corresponds to a mapping
(1−δ)u(a)+δv where v is the argument of the mapping. Consequently each arc
corresponds to an affine mapping, too. Equilibrium payoffs are then generated
by taking all the possible sequences of mappings that the graph allows. The
resulting payoff set is a graph directed self-affine set. The computation of equi-
librium payoffs in repeated games has been previously studied by Cronshaw
(1997), and Judd et al. (2003). In these papers the payoff set is convexified
by assuming correlated strategies. Our work thus contributes to the earlier
works on the computation of equilibrium payoffs when the players use only
pure strategies.

The paper is structured as follows. In Section 2, we restate the APS character-
ization of equilibrium payoffs. Equilibrium paths are considered in Section 3.
In Section 4, we focus on finite subpaths and the computation of equilibrium
subpaths. The properties of the equilibrium payoffs are analyzed in Section 5.
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Conclusions are discussed in Section 6.

2 Subgame Perfect Equilibria

2.1 Discounted Supergames

We assume that there are n players, N = {1, . . . , n} denotes the set of players.
The set of actions available for player i in the stage game is Ai. We assume that
Ai, i ∈ N , are finite sets. The set of action profiles is denoted as A = ×iAi.
Moreover, a−i denotes the action profile of other players than player i, the
corresponding set of action profiles is A−i = ×j 6=iAj . Function u : A 7→ R

n

gives the vector of payoffs that the players receive in the stage game when a
given action profile is played, i.e., if a ∈ A is played, player i receives payoff
ui(a).

In the supergame the stage game is infinitely repeated, and the players dis-
count the future payoffs with discount factors δi, i ∈ N . We assume perfect
monitoring: all players observe the action profile played at the end of each
period. A history contains the path of action profiles that have previously
been played in the game. The set of length k histories or paths is denoted as
Ak = ×kA. The empty path is ∅, i.e., A0 = {∅}. Infinitely long paths are
denoted as A∞. When referring to the set of paths beginning with a given
action profile a we use Ak(a) and A∞(a) for length k paths and infinitely long
paths, respectively. Moreover, A is the set of all paths, finite or infinite, and
A(a) is the set of all paths that start with a, i.e., union of Ak(a), k = 1, 2, . . .
and A∞(a).

A strategy for player i in the supergame is a sequence of mappings σ0
i , σ

1
i , . . .

where σk
i : Ak 7→ Ai. The set of strategies for player i is Σi. The strategy

profile consisting of σ1, . . . , σn is denoted as σ. Given a strategy profile σ
and a path p, the restriction of the strategy profile after p is is σ|p. The
outcome path, simply path, that σ induces is (a0(σ), a1(σ), . . .) ∈ A∞, where
ak(σ) = σk(a0(σ) · · ·ak−1(σ)) for all k.

The discounted average payoff for player i corresponding to strategy profile σ
is

Ui(σ) = (1 − δi)
∞
∑

k=0

δk
i ui(a

k(σ)). (1)

Subgame perfection is defined in the usual way; σ is a subgame perfect equi-
librium of the supergame if

Ui(σ|p) ≥ Ui(σ
′
i, σ−i|p) ∀i ∈ N, p ∈ Ak, k ≥ 0, and σ′

i ∈ Σi.
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This paper focuses on SPE paths defined as below.

Definition 1 p ∈ A∞ is a subgame perfect equilibrium path (SPEP) if there
is a SPE strategy profile that induces p.

2.2 Characterization of SPE Payoffs

Abreu et al. (1986, 1990) showed that the set of SPE payoffs is a fixed-point
of a particular set-valued monotone operator. The result holds under both
imperfect and perfect monitoring (Cronshaw and Luenberger, 1994). Kitti
(2010) provides a generalization for a particular class of strategies in stochastic
dynamic games with perfect monitoring. We restate the APS theorem under
perfect monitoring for pure strategies.

For a compact set of payoffs V ⊂ R
n, let us denote v−

i (V ) = min {vi : v ∈ V },
i.e., v−

i (V ) is the minimal payoff for player i over V . A pair (a, v) of an action
profile a ∈ A and a continuation payoff v ∈ V is admissible with respect to V
if it satisfies the incentive compatibility constraint

(1 − δi)ui(a) + δivi ≥ max
ai∈Ai

[

(1 − δi)u(ai, a−i) + δiv
−
i (V )

]

∀i ∈ N. (2)

This constraint says that it is better for player i to take action ai and get the
payoffs vi than to deviate and then obtain v−

i (V ).

Given a set of V ⊂ R
n, we define the set of feasible action profiles, F (V ), to

consist of action profiles for which there is v ∈ V such that (a, v) is admissible.
For a ∈ F (V ), we denote the set of possible continuation payoffs as Ca(V ),
i.e., v ∈ Ca(V ) if (a, v) is admissible. Note that the vector of least payoffs
that make (a, v) admissible can be found from the incentive compatibility
condition. We let con(a) denote this vector. It is the unique solution of the
system of equations

(1 − δi)u(a) + δivi = max
ai∈Ai

[

(1 − δi)ui(ai, a−i) + δiv
−
i (V ∗)

]

, i ∈ N.

Note that Ca(V ) = {v ∈ V : v ≥ con(a)}, where the inequality means that
vi ≥ coni(a) for all i ∈ N .

We define an affine mapping Ba : R
n 7→ R

n corresponding to an action profile
a ∈ A by setting

Ba(v) = (I − T )u(a) + Tv,

where I is n×n identity matrix and T is a n×n diagonal matrix with discount
factors δ1, . . . , δn on the diagonal. Now we are ready to state the APS theorem.
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Proposition 1 Subgame perfect equilibrium payoffs are the unique largest
compact set V ∗ for which

V ∗ =
⋃

a∈F (V ∗)

Ca(V
∗) =

⋃

a∈F (V ∗)

Ba(Ca(V
∗)).

Proof. The result for the equality of V ∗ and the union of Ba(Ca(V
∗)),a ∈ A,

follows directly from the APS theorem according to which V ∗ is the largest
set for which V ∗ = B(V ∗), where

B(V ∗) =
⋃

(a,v)

{Ba(v) : (a, v) admissible w.r.t. V ∗}.

Let us now show the first equality. The inclusion that the right hand side is
contained in V ∗ is obvious. Hence, we are left to show that v ∈ V ∗ implies
that v belongs also to the right hand side set. If this was not the case then
there were no a such that (a, v) is admissible. This is in contradiction with v
being SPE. 2

The operator B in the above proof is monotone in the set inclusion, i.e.,
B(S1) ⊆ B(S2) when S1 ⊆ S2. The monotonicity implies that the iteration
W k+1 = B(W k) converges monotonically to V ∗ when V ∗ ⊆ W 0. This idea has
been further developed for computational purposes by Cronshaw (1997) and
Judd et al. (2003) when a public correlation device is available and players
have equal discount factors.

Proposition 1 tells that V ∗ is a fixed-point of the iterated function system
defined by Ba, a ∈ A, and incentive compatibility constraints. In the particular
case when Ca(V

∗) = V ∗ for all a ∈ F (V ∗), the set V ∗ is a self-affine fractal.
Otherwise, it is not self-affine but it is contained in the self-affine set defined
by the action profiles, i.e., it is a sub-self-affine set. We shall later return to
the structure of the payoff set and describe how V ∗ is generated. In addition
to denoting SPE payoffs as V ∗ we shall denote these payoffs corresponding to
u and T as V (u, T ).

Note that it is possible that there are no subgame perfect equilibria. When the
stage game has pure strategy equilibria, then it holds that V ∗ 6= ∅. However,
even when there are no pure strategy Nash equilibria, the repeated game may
have a non-empty set of subgame perfect equilibria.

There is one important observation to be made from APS characterization. It
is based on the fact that a path p is a SPEP if and only if it is supported by the
threat of reverting to the path giving v−

i (V ∗) to the player i who deviated. The
paths that yield the least equilibrium payoffs v−

i (V ∗), i ∈ N , form an extremal
penal code (Abreu, 1986, 1988). Notice that the payoffs v−

i (V ∗), i ∈ N , are
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exactly what appear on the right hand side of players’ incentive compatibility
constraints.

3 Equilibrium Paths and Subpaths

In this section we analyze the paths that yield payoffs in the set V ∗ that is the
set of SPE payoffs. For p ∈ A, we pj is that starts from the element j +1, and
pk is the path of first k elements of p. More specifically, when p = a0a1 · · · , we
have p1 = a1a2 · · · , pk = a0 · · ·ak−1, and pk

j = aj · · ·aj+k−1.

The length of path p is denoted as |p|, i(p) is the initial and f(p) the final
element of p. If p is infinitely long, in brief an infinite subpath, then f(p) = ∅.
If p and p′ are two paths then pp′ is the path obtained by juxtaposing the
terms of p and p′. We shall focus on fragments of SPEPs. These fragments will
be called equilibrium subpaths.

Definition 2 A path p′ ∈ A(a) is a SPE subpath if there is a SPEP p ∈ A∞(a)
such that p|p

′| = p′.

Let us consider the set of tail payoffs that are possible after an action profile a
when it begins a path p ∈ A(a) that may be finitely or infinitely long. We also
assume that p is a SPE subpath. If p is infinite then it is an equilibrium path
itself. First, we can observe that a should be followed by a payoff that belongs
to Ca(V

∗). As a is followed by p1, we need consider what are the payoffs that
i(p1) generates from the set of tail payoffs that are possible for i(p1) when it
is followed by p2.

Let W (p) denote the set of continuation payoffs that are possible for a after
p ∈ A(a). Then it holds that this set satisfies the recursion

W (p) = Ca(V
∗) ∩ Bi(p1)(W (p1)).

Namely, the continuation payoff for a should belong to Ca(V
∗) and it should

be generated by i(p1) from W (p1). Note that for W (p) we need W (p1) for
which we need W (p2) and so on. In particular, if |p| = ∞, the recursion is
infinite and W (p) becomes a singleton. To complete the definition of W (p) we
set W (∅) = V ∗ and B∅ = I. This is needed because p1 is an empty path when
|p| = 1. The following example clarifies the construction of W (p).

Example 1 Let us assume that there are two action profiles a and b, and let
us consider the subpath abba. To find out W (p) we start with the final element
of the path, i.e., from a. Let us take Ca(V

∗). If v ∈ Ca(V
∗) is followed after

a, the payoff that is obtained when taking first b is (I −T )u(b)+Tv, i.e., Bbv.
More generally the set of payoffs that are possible after ba are Bb(Ca(V

∗)).
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We can now consider the payoffs that are possible after bba. This set is simply
W (p1) = Bb(Bb(Ca(V

∗))). Eventually we obtain W (p).

The following observations on W (p) form a basis for the definition of elemen-
tary subpaths.

Remark 1 Let p ∈ A(a) for a ∈ A.

i) p is a SPE subpath if and only if W (p) 6= ∅.
ii) If W (p1) 6= ∅ and

Bi(p1)(W (p1)) ⊆ Ca(V
∗), (3)

then pp′ is a SPE subpath whenever f(p)p′ is a SPE subpath.

The second observation is particularly important. It says that any SPE sub-
path that follows from the final element of p constitutes another SPE subpath
when it is juxtaposed with p. For example if abc is a SPE subpath such that
W (bc) 6= ∅ and Bb(W (bc)) ⊆ Ca(V

∗), then ab can be followed by any SPE
subpath that begins with c. Note also that, if V ∗ ⊆ Ca(V

∗), i.e., V ∗ = Ca(V
∗),

then a can be followed by any SPE subpath.

The subpaths that satisfy (3) play a crucial role in the rest of the paper. In
particular, they give us elementary subpaths.

Definition 3 If p ∈ A(a) satisfies W (p1) 6= ∅, condition (3), and there is no
k < |p|, such that pk satisfies these conditions, then p is an elementary subpath
and we denote p ∈ P |p|(a).

Note that we allow for infinitely long sequences; if p ∈ P∞(a), then Ca(V
∗) \

Bi(p1)(W (pk
1)) 6= ∅ for all k. The requirement that no restriction to any first

k elements satisfies (3) means that P k sets do not contain paths that already
belong to other P j sets. For example, if abc is an elementary subpath, then
abcd cannot be an elementary subpath even though it may satisfy (3).

The following result tells that all the SPEPs are characterized by the elemen-
tary subpaths, i.e., sets P k and P∞.

Proposition 2 A path p ∈ A∞(a) is a SPEP if and only if for all j ∈ N

either pk
j ∈ P k(i(pk

j )) for some k or pj ∈ P∞(i(pj)).

Proof. By the construction of P k’s, a SPEP path p satisfies one of the two
conditions of the proposition.

Let us assume that for all j either for all j we have pk
j ∈ P k(i(pk

j )) for some k or
pj ∈ P∞(i(pj)). In that case, for any j the payoff to player i is at least v−

i (V ∗)
when the players choose action profiles such that they stay on the subpath pk

j

or pj. We first argue that in the case when there is k such that pk
j ∈ P k(i(pk

j )),
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the threat of reverting to the path that yields v−
i (V ∗) to the deviator i, keeps

the players on path p. In that case it does not matter for players at stage j
what happens after k periods as long as the continuation payoff after these
periods is in V ∗ and the penalty from deviations is v−

i (V ∗). On the other hand,
if pj ∈ P∞(i(pj)) then the players do not have any incentive to deviate either.
This means that the path p is supported by extremal penal code, i.e., there is
an SPE strategy that yields p as an outcome. 2

Example 2 Let us assume that there are four action profiles; A = {a, b, c, d}.
Moreover, let the sets P k(a), k = 1, 2, a ∈ A, be as in the table below. Now,
aa ∈ P 2(a) means that on any equilibrium path a should be followed by another
a after which it does not matter what comes next as long as it is an equilibrium
path. However, since only action profile that can follow a is a, we observe that
after the first a on an equilibrium path, the rest of the action profiles are also
a’s. On the other hand, b can be followed by two action profiles; ba and bc, after
which any equilibrium path starting with a or c, respectively, is possible. For the
action profile c the situation is symmetric to that of b. Finally, since d ∈ P 1(d),
it can be followed by any equilibrium path. Now, all equilibrium paths can be
presented as dNb0,1(cb)Nc0,1a∞, where b0,1 means b is either played once or is
not played at all. Moreover, dN means that d can be repeated arbitrarily many
times, here N = {0, 1, . . .}, and a∞ means that a is repeated infinitely many
times.

Table 1
An example of sets P 1(a) and P 2(a).

a b c d

P 1 ∅ ∅ ∅ {d}
P 2 {aa} {ba, bc} {ca, cb} ∅

The sets P k and P∞ tell us what are the subpaths that can follow an initial
action. The result of Proposition 2 says that for each action profile a on the
equilibrium path there is a subpath belonging to P k(a) for some k or P∞(a).
This means that equilibrium paths follow a particular syntax defined by the
elementary subpaths. In the rest of the paper we shall focus on the collections
of elementary subpaths. These collections are called elementary sets. Particular
attention will be paid to finite elementary sets and finite subsets of them.

Definition 4 The collection of sets P k(a), k = 1, 2, . . ., and P∞(a), a ∈ A is
is an elementary set corresponding to the infinitely repeated game with payoffs
u and discount factors determined by T . This collection is denoted as S(u, T ).
Moreover, Sk(u, T ) contains P j(a), j = 1, . . . , k, a ∈ A.

Note that Sk(u, T ) contains finitely many subpaths because P k are finite for all
k. Another observation on finiteness of elementary subpaths is an immediate
consequence of contractivity of Ba, a ∈ A. Namely, it follows that if p ∈ A(a)
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and v(p1) > con(a), then there is k such that pk satisfies (3). If p1 is an empty
path we set vi(p1) = v−

i (V ∗) for all i ∈ I. More generally we have the following
result.

Proposition 3 For any ε > 0 there is k such that p ∈ A∞(a), a ∈ A, v(p1) ≥
con(a) + ε, imply that pl

j ∈ P l(i(pj)) for l ≤ k.

Proof. Because A is finite and Ba, a ∈ A, are contractions, for any ρ > 0 there
is k such that the diameter of the set that is obtained by taking the image of
V ∗ under a sequence Ba0 , . . . , Bak−1 , aj ∈ A for all j, has the diameter less than
ρ. In particular, the diameter of the set Bi(p1)(W (pk

1)) is less than ρ for any
p. Now, ρ can be chosen such that Bi(p1)(W (pk

1)) ⊆ {v : v(p1) > con(a) + ε},
which concludes the proof. 2

This result means that if there is an equilibrium path p ∈ A(a) for which (3)
fails to hold for all pk, then vi(p1) = coni(a) for some i. The opposite is not
true, i.e., we may have vi(p1) = coni(a) for some i ∈ N at the same time when
(3) holds.

Let us now consider the comparative statics of S(u, T ) for T . Let T 1 and T 2 be
two matrices corresponding to two different sets of discount factors. We denote
T 1 ≪ T 2 if the discount factors corresponding to T 2 (diagonal elements) are
at least those of T 1. With a slight abuse of notation, we denote p ∈ S(u, T )
when there is a set P k(a) or P∞(a), i(p) = a, such that p belongs to this set
of subpaths.

Proposition 4 If T 1 ≪ T 2 then p ∈ S(u, T 1) implies that there is k ≤ |p|
such that pk ∈ S(u, T 2).

In the following P k(a; u, T i) denotes the set of length k elementary subpaths
corresponding to T i, Ca(V (u, T i); u, T i) is the set of continuation payoffs,
v(pk; u, T i) is the payoff corresponding to pk, and W (pk; u, T i) is the set of
possible continuations after pk, when u and T i are given.

Proof. As discount factors increase the set of equilibrium strategies enlarges.
Consequently, if we take a path p ∈ P l(a; u, T 1) and a continuation payoff
v(f(p); u, T 1) ∈ Cf(p)(V (u, T 1); u, T 1), then v(f(p); T 2) ∈ Cf(p)(V (u, T 2); u, T 2).
By induction argument, v(pk; T

1) ∈ W (pk; u, T 1) implies that v(pk; u, T 2) ∈
W (pk; u, T 2) for all k ≤ l. Hence, if v(p1; u, T 1) ∈ Ca(V (u, T 1); u, T 1), i.e., (3)
holds, we also have v(p1; u, T 2) ∈ Ca(V (u, T 2); u, T 2). This means that either
p ∈ P l(a; u, T 1) or there is k ≤ l such that pk ∈ P k(a). If p ∈ P∞(a; u, T 1)
then p is a SPEP for T 1, and therefore it is a SPEP also for T 2. Again, either
p ∈ P∞(a; u, T 2) or there is k such that pk ∈ P k(a; u, T 2). 2

When the discount factor increases, all the subpaths that satisfy (3) still
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satisfy this condition. It may, however, happen that the number of elemen-
tary subpaths decreases and their maximum length decreases. For example,
if abcd, abdc ∈ S(u, T 1) it may happen that ab ∈ S(u, T 2) for T 2 ≫ T 1, i.e.,
corresponding to two elementary subpaths starting with ab there is only one
when discount factors increase.

4 Finite Elementary Sets: Multidigraph Presentation

The main result of this section is that all the SPEPs are represented by a
multidigraph when S(u, T ) contains finitely many subpaths. Even if the el-
ementary set is not finite, the graph presentation is possible for the paths
generated by Sk(u, T ), k ≥ 1.

The idea in the construction of a multidigraph is based on first presenting all
the elementary subpaths as a tree, then we transform this tree into a graph, and
finally simplify the graph into a multidigraph. In this process the nodes and
arcs are given labels. Equilibrium paths can be created from the multidigraph
by joining different arcs. Consequently, the paths are determined by the labels
of the arcs. Later we shall observe that the labels of arcs can be utilized in
constructing payoff sets. The procedure for constructing the multidigraph is
described below.

(1) Form a tree of the finite elementary paths. The root node is the empty
history ∅. For example, let us assume that the elementary subpaths are
aba, abb, ba, and bb. The tree presentation is given in Figure 1.

(2) Form a graph from the tree. Each node in the tree corresponds to a node
in the graph. Form the arcs between the nodes by going through them
and determine the destinations for each one.
(a) The destinations of an inner node in the tree, i.e., node with children,

are its children. Set an arc to each destination node. For example, in
the previous example a-node has a destination ab.

(b) The destinations of a leaf node, i.e., node with no children, which is
connected to the root node ∅ are all the child nodes of ∅.

(c) For the other leaf nodes, find smallest k ≥ 1 such that pk is found in
the tree. For example, corresponding to the leaf aba in the tree we
first search for ba in the tree. Since it is found we set the node ba as
a destination and insert the corresponding arc.

(3) Forming a multidigraph. Simplify the graph obtained in previous step by
removing the nodes that have only one destination and are not children
of ∅. For example, let us assume that there are two arcs pointing to c,
from a and b, and c has one destination to d. Because there is only one
destination from c we remove node c and redirect the incoming arcs to
the destination d. So we have arcs from a to d and b to d. We label both
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these arcs as cd. The result of the simplification is a directed graph, where
there may be multiple arcs between the nodes, i.e., multidigraph.

(4) Insert arcs and nodes for infinitely long subpaths. For each infinitely long
elementary subpath find largest k such that pk is a node. Insert an arc
with label pk from this node to a dummy node corresponding to the path.

As a consequence of the above construction we get the result stated below.

Proposition 5 When S(u, T ) contains finitely many subpaths, then all SPEPs
are represented by a multidigraph.

An immediate corollary of the result is that when we take Sk(u, T ), then the
multidigraph presentation is possible.

Corollary 1 The SPEPs given by Sk(u, T ) can be presented as a multidi-
graph.

In some cases the infinitely long elementary subpaths follow a particular syn-
tax. In the following example we demonstrate this phenomenon. In that case
it is possible to associate a smaller number of dummy nodes to the graph than
in the previous construction.

4.1 Example of Constructing a Multidigraph

We assume that there are four action profiles: a, b, c, and d. The finite elemen-
tary subpaths are given by sets in Table 1 and P 4(b) = {bdca}, P 4(c) = {cdba},
the rest of P k(a), a ∈ A, being empty. These elementary subpaths are obtained
for the prisoners’ dilemma game. We show how this is done in the following
section. If a is played then only a may follow, and if d is played in the be-
ginning, then any action profile may follow. If b is played, then a may follow
after which a is repeated, or dca may follow and also after this subpath a is
repeated.

The tree of elementary subpaths is presented in Figure 2. The destinations of
leaf nodes are indicated next to them. After forming a graph from this tree
(Step 2) and simplifying it, we get the directed multigraph composed of solid
arrows in Figure 2. The subpaths that are played after an action profile to get
to another node are shown next to the arc if this subpath is different from the
node to which the arc is directed.

We can see that there are three subpaths a, bc, and d that may be infinitely
repeated. These correspond to the cycles in the multidigraph. The SPE path
may move from d to either bc or a, and from bc to a, but a is absorbing, i.e.,
once it has been reached the play will never leave the node. There are two
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kind of subpaths that can be played only finitely many times. Those that can
be played at the beginning of the game and those that can be played in the
middle of the game. For example, we may have b in ba∞ as an example of the
first kind, and bdc in dNbdca∞ as a subpath of the second kind. Indeed, these
will be equilibrium paths in the prisoners’ dilemma game as will be seen. We
can also see that there are two transitions from both nodes b and c to node a,
i.e., paths ba and bcda.

∅

a aa

b

ba

bc

bd bdc bdca

c

ca

cb

cd cdb cdba

a

a

c

ca
a

b
ba

a, b, c, d

d

∅

a b

c d

a∗

dca

dba

d

dcd

d

ad
dbd

(a) Tree (b) Multidigraph

Figure 2. Tree of finite elementary subpaths and a multidigraph presentation of all
elementary subpaths.

To get all the SPEPs of the game, we add nodes and arcs corresponding to
infinitely long elementary subpaths to the multidigraph. Let us assume that
these paths are

{ada∞, bda∞, cda∞, bdcda∞, cdbda∞} .

We shall see that these will be the infinitely long elementary subpaths in
prisoners’ dilemma for δ = 1/2. We need another node to distinguish whether
d is played after a, b, or c or not. For example, if ad is played then a∞ must
follow and ad cannot be played any more. We denote this extra node as a∗, and
by adding the new transitions we get the multidigraph of Figure 2 in which
the dashed arrow are also included.

4.2 Computation of Finite Elementary Subpaths

Let us consider a subpath abc. The vector of least payoffs con(ab) that the
players should get after ab to make the first element a incentive compatible
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are found by solving a system (I−T )u(b)+Tv = con(a). Given that con(ab) is
known we can now find the least payoff that is required after abc to make a in-
centive compatible as the first action profile. This continuation payoff con(abc)
solves (I−T )u(c)+T con(abc) = con(ab). If it happens that con(abc) ≤ con(c),
then any equilibrium path starting from c is a possible continuation for abc.
This exactly the same thing that (3) says.

In general we can define con(p) for any p ∈ Ak, k ≥ 2, as above. When
con(pk−1) is known and p = pk−1ak, we set

con(p) = T−1
[

con(pk−1) − (I − T )u(ak)
]

.

Now con(p) is simply the continuation payoff that is required after f(p) to
make the first action profile of p incentive compatible. The following observa-
tions are immediate.

Remark 2 Let p ∈ Ak and v̄i = max{vi : v ∈ V ∗}, i ∈ N .

i) Condition (3) holds for p ∈ Ak with f(p) = a if and only if W (p) 6= ∅
and con(p) ≤ con(a).

ii) If coni(p) > v̄i for p ∈ Ak and some i ∈ N , then p is not an elementary
subpath.

Notice that to detect whether a subpath is elementary or not does not require
knowing the whole set of equilibrium payoffs. The above properties can be
efficiently utilized in the computation of the elementary subpaths.

The algorithm for finding the elementary subpaths is described below.

1. For all a ∈ A include a ∈ P 1(a) if coni(a) ≤ v−
i (V ∗) for all i ∈ N . If,

v−
i (V ∗) ≤ coni(a) ≤ v̄i for all i ∈ N , and the first inequality is strict for

some i ∈ N , then include a in P 1
∗ (a). Set k = 2, and go to Step 2.

2. For each a ∈ A, find con(pb) for all b ∈ A and p ∈ P k−1
∗ (a).

a) If con(pb) ≤ con(b) and P j(b) 6= ∅ for some j ≤ k, include pb in
P k(a).

b) Otherwise, if coni(pb) ≤ v̄i for all i ∈ N and [∪j<kP
j(b)]∪P k−1

∗ (b) 6=
∅, include pb in P k

∗ (a).
If P k+1

∗ (a) = ∅ for all a ∈ A stop. Otherwise, increase k by one and repeat
Step 2.

The set P k
∗ (a) contains the subpaths that are possibly part of elementary

subpaths. The test in step 2.b) tells whether it is possible that pb is part of an
elementary subpath. First, the required continuations should not exceed the
upper bounds v̄i, i ∈ N . Second, either there is a shorter elementary subpath
starting with b or there is possibly some elementary subpath starting with b,
i.e., subpath in P k−1

∗ (b).
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Remark 3 If there is k such that P k
∗ (a) = ∅ for all a ∈ A, then S(u, T )

contains finitely many subpaths.

4.3 Example of Finding Elementary Subpaths

We consider prisoners’ dilemma game with a common discount factor δ = 1/2
and the stage-game payoffs as below.

L R

T 3, 3 0, 4

B 4, 0 1, 1

We denote the action profiles from left to right and top to bottom as a,b,c,
and d; for example (T, R) is b. The penal path is d∞. The punishment payoffs
are v−

i (V ∗) = 1, i = 1, 2.

The aim is to find the elementary set for this game. We classify the finite
paths into elementary and non-elementary sets, and increase the path length
until the neutral set becomes empty. For example, con(d) = (1, 1), and d is
an elementary subpath since coni(d) ≤ v−

i (V ∗), i = 1, 2. The following table
gives the payoff requirements for one and two length paths. The elementary
subpaths are indicated by +, the non-elementary subpaths by −, and those
which belong to P k

∗ (a), k = 1, 2, a ∈ A, by ∗. Since d is an elementary path,
we do not need to examine paths da, db, dc, dd.

Table 2
Finding elementary subpaths with |p| ≤ 2 in prisoners’ dilemma game.

path con(path) path con(path) path con(path)

a (2, 2)∗ b (2, 1)∗ c (1, 2)∗

aa (1, 1)+ ba (1,−1)+ ca (−1, 1)+

ab (4, 0)− bb (4,−2)− cb (2, 0)+

ac (0, 4)− bc (0, 2)+ cc (−2, 4)−

ad (3, 3)∗ bd (3, 1)∗ cd (1, 3)∗

From the table, we can conclude that the nonempty sets P k(a), k ≤ 2, are
as given in Table 1. What are left to search for are the paths beginning with
ad, bd, and cd. We can immediately observe that ad is incentive compatible
only when it is followed by an infinite repetition of a, i.e., P∞(a) = {ada∞},
since no other action profiles give the required payoff (3, 3). Moreover, due to
symmetry, we only need to check paths beginning with b or c.
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Let us consider the three and four length paths beginning with cd. For example,
cda belongs to P 3

∗ (c) because coni(cda) ≤ 3, i ∈ N , and [∪j≤2P
j(a)]∪P 2

∗ (a) =
{aa, ad}.

Table 3
Finding elementary subpaths with 3 ≤ |p| ≤ 4 in prisoners’ dilemma game.

path con(path) path con(path) path con(path)

cda (−1, 3)∗ cdaa (−5, 3)∗ cdba (1, 1)+

cdb (2, 2)∗ cdab (−2, 2)∗,− cdbb (4, 0)−

cdc (−2, 6)− cdac (−6, 6)− cdbc (0, 4)−

cdd (1, 5)− cdad (−3, 5)− cdbd (3, 3)∗

Now, we can see that the only possible paths starting with cd are starting with
cda and cdb. From length four paths, we can observe that P 4(c) = {cdba} and
P∞(c) = {cdbda∞, cda∞}. The only continuation to cdaa is aa, since the only
elementary subpaths starting with a are aa and ad, and ad gives lower payoff
than the required (−5, 3). Notice that cdab is ruled out because ab cannot
be on an equilibrium path, since it is a non-elementary path. The path cdbb
could be ruled out by similar reasoning. Hence, there are no longer paths to
be searched for and we have found the elementary subpaths for the game.

5 Properties of the Payoff Set

In this section we discuss the Hausdorff dimension of SPE payoffs. Intuitively,
the dimension gives a measure for the complexity of the payoff set. As men-
tioned previously, the set of equilibrium payoffs is a sub-self-affine set. This
means that V ∗ belongs to the self-affine set determined by Ba, a ∈ A, i.e.,
V ∗ ⊆ W , where W satisfies

W =
⋃

a∈A

Ba(W ).

The difference between V ∗ and W is that the set of contractions that define V ∗

depends on V ∗ itself, and these contractions do not map the whole set V ∗ but
only subsets that satisfy incentive compatibility conditions. This breaks the
self-affinity in the payoff set. However, when S(u, T ) contains finitely many
subpaths the payoff set is a graph directed self-affine set in the sense of Mauldin
and Williams (1988).
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5.1 Hausdorff Dimension of SPE Payoffs

A graph directed self-affine set is an attractor of a graph directed iterated
function system. Each arc on the multidigraph corresponds to an affine con-
traction mapping. For a supergame these affine contractions are given by the
labels of the arcs in the multigraph presentation of elementary subpaths. For
example, if an arc has a label acdc, the corresponding affine mapping is the
composition BaBcBdBc. This is a contraction because discount factors are less
than one, i.e., T is a contraction. For the nodes corresponding to infinitely
long elementary subpaths the corresponding mappings can be associated with
the values that these subpath yield.

Proposition 6 When S(u, T ) contains finitely many subpaths, V (u, T ) is a
graph-directed self-affine set.

The result is a consequence of Proposition 5. As sketched above, it follows by
associating an affine mapping to each arc of the multigraph presentation. Let
Eqr denote the list of arcs from q to r, and M the list of nodes in the multigraph
presentation. For example, in the prisoners’ dilemma game Eca = {a, cba}. The
invariant sets corresponding to the graph-directed construction satisfy

Vq =
⋃

r∈M

⋃

p∈Eqr

Bp(Vr), for all q ∈ M,

where Bp denotes the affine mapping corresponding to the arc p. Furthermore,
we have V (u, T ) = ∪{Vr : r ∈ M}.

To demonstrate how the infinitely long elementary subpaths are treated we
may consider the arc cd from c to a∗ in prisoners’ dilemma. Corresponding to
a∗ we have the payoff (3, 3) and we set Bcdv = BcBd(3, 3) for all v ∈ R

2.

In general, it is hard to say much about the exact dimension of the graph-
directed self-affine sets. Upper and lower estimates of the dimension have been
discussed by Edgar and Golds (1999). The following proposition is obtained
for small discount factors as a consequence of a recent result by Käenmäki
and Vilppolainen (2009). Topological pressure needed in the proposition is a
particular function that is defined by SPEPs. Let us assume that the players
are indexed according to the order of discount factors such that δ1 ≥ δ2 ≥
· · · ≥ δn. The singular value function of T j , i.e., j-times product of T , is then

φt(T j) =







(δ1δ2 · · · δm−1)
jδj(t−m+1)

m , 0 ≤ t < n,

(δ1δ2 · · · δn)jt/n, t ≥ n,

where m is the integer such that m − 1 ≤ t ≤ m. Let K denote the set of all
SPEPs, Kj = {pj ∈ Aj : p ∈ K}, and #Kj the number of elements in Kj .
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When S(u, T ) has finitely many subpaths, K and Kj, j ≥ 1, are determined
by the multidigraph presentation. The topological pressure (Falconer, 1995,
Käenmäki and Vilppolainen, 2009) takes the form

P (t) = lim
j→∞

log [φt(T j)(#Kj)]

j
.

In the following s(u, T ) denotes the zero of the topological pressure for given
u and T .

Proposition 7 Let us assume that δi < 1/2 for all i ∈ N . Then the Haus-
dorff dimension of V (u, T ) is min{n, s(u, T )} for Lebesgue-almost all payoff
functions u for which V (u, T ) 6= ∅.

Proof. The result follows from Theorem 5.2 in Käenmäki and Vilppolainen
(2009). For the assumptions of the theorem we need three properties. First,
T should satisfy ‖T‖ < 1/2, where ‖T‖ is the largest singular value of T ,
i.e., the square root of largest eigenvalue of T × T . It easy to observe that
‖T‖ = maxi δi. Consequently, ‖T‖ < 1/2 when δi < 1/2 for all i ∈ N . Second,
p1 should be a SPEP whenever p is a SPEP. This is obviously the case. The
third property that we need is that the set of SPEPs should be compact in
the topology of the metric defined by the distance

|p − r| =







αmin{k−1:pk 6=rk}, p 6= r,

0, p = r,

where α ∈ (0, 1).

To obtain compactness we first associate a common element to all action
profiles that yield the same payoff. For example, if u(a) = u(b) for a, b ∈ A,
a 6= b, we can simply replace every b on all paths with a. Now take a sequence
of SPEPs p(j), j = 1, 2, . . . ,. The sequence of payoffs corresponding to these
paths has a convergent subsequence. This is because V ∗ is a compact set when
non-empty. Let p(jk) denote the subsequence of SPEPs corresponding to this
subsequence of payoffs, and let p denote a path corresponding to the limit.
Because δi < 1/2 it holds that Ba(V

∗) ∩ Bb(V
∗) = ∅ when a, b ∈ A and

u(a) 6= u(b). This together with the assumption that all the action profiles on
equilibrium paths have different payoffs implies that the limit path is unique.
Moreover, the no-overlapping property guarantees that only the final elements
of p(jk) can differ from p, and when k is increased the threshold for k above
which the elements are different increases. This means that |p(jk)− p| goes to
zero as k increases, which proves the compactness. 2

In general the Hausdorff dimension increases as the affine mappings become
less contractive, i.e., discount factors increase. This observation follows directly
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from the definition of topological pressure. However, it is well known for self-
affine sets that there can be exceptional points, i.e., payoff functions u, for
which the zero of topological pressure does not give the dimension but only
an upper bound, see, e.g., Falconer and Miao (2008). Hence, it may happen
that as discount factors increase the Hausdorff dimension drops suddenly.

5.2 Examples

To illustrate the possible payoff sets that can be obtained from multidigraph
presentations we consider two examples. The prisoners’ dilemma game and
the following game, called Sierpinski game. The payoffs are as given below
and δ = 1/2. We also denote a = (T, L), b = (C, M), and c = (B, R).

L M R

T 2 −
√

3, 1 −1,−1 −1,−1

C −1,−1 1, 2 −
√

3 −1,−1

B −1,−1 −1,−1 0, 0

In this game there are three pure strategy Nash equilibria, which are the corner
points of V ∗. The set set V ∗, illustrated in Figure 3, is one of the most famous
fractals—Sierpinski triangle. It is well known that the Hausdorff dimension of
the set is ln 3/ ln 2 ≈ 1.585. This value tells that the set does not quite fill
the two dimensional space but on the other hand it is more complex than one
dimensional sets.

The set V ∗ is generated by arbitrary paths of combinations of the three Nash
equilibria. The payoff of any infinite path that is a combination of these three
points correspond to a point in the Sierpinski triangle. The multidigraph for
the elementary subpaths consists of these three action profiles and all transi-
tions between them (and the loops to itself), see Figure 3. Here the dummy
node ∅ is omitted as redundant.

We can make interesting observation on the effect of changing the discount
factor in the Sierpinski game. In addition to affecting the elementary set as
shown in Proposition 4, discounting defines the scale of the payoff set. When
the discount factor is increased a little and the elementary set does not change,
then only the distance between the points in the SPE payoff set is decreased.

In Sierpinski game the payoff set fills the triangle defined by the three Nash
equilibria when δ > 2/3, i.e., the Hausdorff dimension becomes two. This hap-
pens even if the set of elementary subpaths remains the same when discount
factor increases. For example, we can replace minus ones by a small enough
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(a) SPE payoffs—Sierpinski triangle (b) Multidigraph

Figure 3. Sierpinski triangle as the SPE payoff set and the multidigraph presentation
of SPEPs.

number to guarantee that there will be no more equilibrium paths when δ
increases. This gives an important insight into the folk theorem for discounted
supergames (see, e.g., Fudenberg and Maskin, 1986): one reason for the fact
that any feasible payoff above min-max levels can be achieved as an SPE
outcome is that the payoffs are less contracted under Ba, a ∈ A, when the
discount factors increase. Moreover, the set of payoffs may enlarge even when
the set of equilibrium paths and hence strategies remains the same.

Finally, let us examine the payoff set in the repeated prisoner’s dilemma game.
The payoff sets of variations of this supergame have previously been studied,
e.g., by Sorin (1986), Stahl (1991), and Mailath et al. (2002). The payoff
sets for common discount factors δ = 0.5 (left) and δ = 0.58 (right) are
illustrated in figure 5.2. The sets consists of similar parts, which shows the
fractal nature. The sets are constructed by generating finite paths using the
multidigraph presentations and combining to them the cycles starting from the
final actions of the paths. For δ = 0.5 the set is rather sparse and its Hausdorff
dimension is zero. The payoff requirements for the first and second columns
are presented as dashed and solid lines, respectively. We can also see that
there are points on these lines, and these correspond to the paths in P∞, like
ada∞, bda∞ and cda∞. This is the role of the infinitely long elementary paths,
i.e., some part of the path gives exactly the minimum payoff requirement. For
δ = 0.58 the payoff set has much more structure and its Hausdorff dimension
is approximately 1.4.

The complexity of SPEPs and the Hausdorff dimension comes down to the
cycles in the multigraph. In this game δ = 0.5 is exactly the limit when the
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dimension jumps up from zero. For example, with δ = 0.51 another cycle
appears in node a besides repeating a infinitely. Consequently, adaaa becomes
elementary, which makes it possible to play d repeatedly after a as long as at
least three a’s are played after it. The dimension s ≈ 0.42 of this two cycle
system is computed from equation 0.51s + 0.515s = 1, where five is the length
of the new cycle. For δ = 0.58 the multigraph has over one hundred nodes,
node a that determines the dimension has over four hundred cycles, and there
are over one hundred elementary subpaths with maximal length 22.
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Figure 4. The payoff sets in prisoners’ dilemma game for δ = 0.5 and δ = 0.58.

6 Conclusions

This paper both characterizes and offers a way to compute pure strategy sub-
game perfect equilibrium paths in discounted supergames. Complex strategic
behavior is collapsed into subpaths of action profiles that determine the equi-
librium outcomes. These subpaths have the property that the players have no
incentive to deviate from the first action profile if any equilibrium path follows
from the final element of the subpath.

The elementary subpaths form the basis for a recursive presentation of all
the equilibrium paths in the game. In particular, using elementary subpaths
it is possible to present all equilibrium paths compactly with a multidigraph.
Consequently, the set of equilibrium payoffs is a graph-directed self-affine set,
when there are finitely many elementary subpaths. More generally the set is
sub-self-affine. Due to these observations it is possible to show that when the
discount factors are less than one half, the Hausdorff dimension of the payoff
set is given by a zero of topological pressure almost surely. This dimension gives
a measure for the complexity of the set of equilibrium payoffs. In general, the
dimension increases as the discount factors increase.
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