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Abstract. Recent literature shows that pure approximate Nash

equilibria exist in anonymous and continuous large finite games.

Here we study continuous but non-anonymous games. Call the

impact of a game to the maximal difference in some player’s payoff

when one other player changes his strategy. We prove that small

impact is exactly what guarantees existence of pure approximate

equilibria. That is, we show that there is a threshold (which de-

pends on the number of players and strategies in the game) such

that pure approximate equilibria exist whenever the impact is less

than this threshold. Further, whenever the impact is larger than

the threshold there are arbitrarily large games with no pure ap-

proximate equilibria.

1. introduction

There is a growing interest in properties of large (with many players)

but finite non–cooperative games. The work that initiated this study

is [7], where it is shown that Nash equilibria of incomplete information

large games that satisfy certain anonymity and continuity conditions

are robust in the following sense: Even after types and strategies of

all players are realized and revealed to everyone, with high probability
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no player would be able to gain much by deviating to another strat-

egy1. Restricting attention to the special case of complete information

games, this result implies that the realized strategy profile of a mixed

equilibrium is with high probability an approximate pure equilibrium

in such games. Several subsequent papers present similar results un-

der various assumptions on the spaces of types and strategies available

to the players, and on properties of the payoff functions in the game.

Examples for such works include2 [3], [4], [5], [6] and [11].

The above ‘self–purification’ property implies of course that approx-

imate pure equilibria exist in anonymous and continuous games. In

this paper we ask a more modest question: What properties of large

games guarantee existence of approximate pure equilibrium3? Thus,

we are interested in a weaker property of the equilibria set; and as a

consequence we are able to show that a larger class of games has this

property.

An assumption common to all of the above works is that the payoff

function of each player is continuous in the distribution induced by

the opponents’ strategy profile. In other words, for every player i and

strategy ai, if the proportion of players that choose each strategy is

close under two strategy profiles a−i and a′−i, then the payoffs fi(ai, a−i)

and fi(ai, a
′
−i) are close. This continuity condition already implies that

the game is anonymous - the payoff to player i does not change if two

1The result in [7] is in fact stronger since it shows that the equilibria of such games
are robust in other ways as well.
2There are also a couple of earlier works on related issues. See [9] and [2].
3The concept of mixed strategy is often criticized as having little appeal in practical
situations (see [10] for a discussion). Many attempts were made to justify this
concept and to identify classes of games where pure equilibrium does exist.
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players j and k switch their strategies. Thus, anonymity follows from

continuity and the two cannot be separated.

Here, on the other hand, we use a weaker notion of continuity which

doesn’t imply anonymity. Namely, we call the impact of a game to

the maximal difference in some player’s payoff when one other player

changes his strategy. Smaller impact corresponds to ‘more continuity’.

For instance, the condition of continuity in the induced distribution

employed by the previous literature implies that the impact is of the

order of 1/n, where n is the number of players in the game.

Our main result (Theorem 3.1) shows that any game with impact

less than ε/
√

8n log(2mn) admits a pure ε–equilibrium, where n and m

are the numbers of players and strategies for each player, respectively.

We emphasize that no anonymity condition is required for this result4.

Further, we show (Theorem 3.4) that this bound is almost tight in

the following sense: There are arbitrarily large games with m = 2

strategies for each player and impact less than 60/
√

n with no pure

1/3–equilibrium.

The proof of the positive result follows the same idea as in [7]: Start

with a possibly mixed equilibrium and randomly (according to the

equilibrium distribution) choose a pure strategy profile. [7] shows that

with high probability you will get an approximate equilibrium; we show

that there is a positive probability to get an approximate equilibrium,

which is enough to establish existence. For the proof that the bound is

tight we construct a non-anonymous version of matching pennies with

4In a companion paper we show that a much stronger result holds for anonymous
games.
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n = 2k players5: There are k males and k females and each one of them

should choose between the actions +1 and −1. For each pair (i, j) of a

female and a male, either i wants to match j (and j to mismatch i) or

i wants to mismatch j (and j to match i). The payoff to each player

is the sum across all these ‘small games’ times some constant δ. We

use the probabilistic method to show that it is possible to determine

who want to match and who want to mismatch in such a way that no

approximate equilibrium exist when δ is in the order of 1/
√

n.

2. Setup

An n–player game in normal form is given by finite sets {Ai}n
i=1 of

strategies and by payoff functions {fi : A → [−1, 1]}n
i=1, where A =

∏n
i=1 Ai is the set of strategy profiles. A mixed strategy for player i is a

probability distribution over Ai. Each fi is extended linearly to profiles

of mixed strategies. Nash equilibrium and ε–Nash equilibrium (in pure

or mixed strategies) are defined as usual.

For each i, we view the product space A−i =
∏

j 6=i Ai as a metric

space, with the metric d(a′−i, a
′′
−i) = #{1 ≤ j ≤ n : j 6= i, a′j 6= a′′j}.

2.1. Definition. The impact of a game is given by

max{|fi(ai, a
′
−i)− fi(ai, a

′′
−i)|},

where the maximum ranges over all players i, all strategies ai ∈ Ai and

all pairs a′−i, a
′′
−i of opponents’ strategy profiles such that d(a′−i, a

′′
−i) =

1.

5An anonymous version of this game is used as an example in [7].
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Games with impact δ have the property that a player’s payoff does

not change by more than δ when one opponent changes her strategy.

This implies that for each i and each ai ∈ Ai the function fi(ai, ·) is

δ–Lipshitz on A−i.

We denote by L(n,m, δ) the set of games with n players, at most m

strategies for every player and impact of at most δ.

3. Main results

In this section we state and prove the main results of the paper. We

start with the positive result of existence of pure approximate equilib-

rium in games with small impact. Then we show that the bound is

(almost) tight.

3.1. Theorem. Let ε > 0. Then every game in L(n, m, δ) for δ =

ε/
√

8n log(2mn) admits a pure ε–equilibrium.

Proof. Consider a game in L(n,m, δ) with δ = ε/
√

8n log(2mn). Let

(µ1, . . . , µn) be a mixed strategy Nash equilibrium of the game. Thus,

each µi is a probability distribution over Ai and

(1) support(µi) ⊆ arg max
ai∈Ai

∫
fi(ai, τ)µ−i(dτ),

where µ−i =
∏

j 6=i µj.

For every player i and every strategy h ∈ Ai let Ei,h ⊆ A be the set

of all strategy profiles a such that, if player i plays h against a−i his

payoff is roughly the same as his expected payoff when he plays h and
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the opponents play their Nash equilibrium strategy:

Ei,h = Ai ×
{

a−i ∈ A−i :

∣∣∣∣fi(h, a−i)−
∫

fi(h, τ)µ−i(dτ)

∣∣∣∣ ≤ ε/2

}
.

From Proposition A.1 in the Appendix and the choice of δ it follows

that

µ(Ec
i,h) ≤ 2 exp(−ε2/8(n− 1)δ2) < 1/nm

for every player i and every h ∈ Ai. Since there are at most mn such

events Ei,h, it follows that µ(∩Ei,h) > 0. Let a∗ be a strategy profile

such that a∗ ∈ support(µ) and a∗ ∈ ∩Ei,h. We claim that a∗ is an

ε–equilibrium. Indeed, for every player i and every deviation d ∈ Ai

one has

fi(d, a∗−i) ≤
∫

fi(d, τ)µ−i(dτ)+ε/2 ≤
∫

fi(a
∗
i , τ)µ−i(dτ)+ε/2 ≤ fi(a

∗, a∗−i)+ε

where the first inequality follows from the fact that a∗ ∈ Ei,d, the

second from (1) and the third from the fact that a∗ ∈ Ei,a∗i . ¤

Since our main interest is in games with many players, we would

like to think of the strategy set as fixed and increase the number of

players to infinity. The following immediate corollary of Theorem 3.1

establishes the required rate of convergence for this case.

3.2. Corollary. Fix m and consider a family of games with m strategies

for each player. Let δ : N → [0, 1] be such that δ(n) = o(1/
√

n log n).

Then for every ε > 0, there is N such that every n player game with

n > N and impact smaller than δ(n) admits a pure ε-equilibrium.
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3.3. Remark. Theorem 3.1 (and Corollary 3.2) is true even if the payoff

functions are not restricted to get values in [−1, 1]. Indeed, the proof

does not use this fact at all.

The tightness of the bound is demonstrated by the following theorem.

3.4. Theorem. For every even n large enough there is a game in

L(n, 2, 60/
√

n) with no pure 1/3–equilibrium.

Proof. Let the number of players be n = 2k and let the set of strategies

for each player be {+1,−1}. We divide the players into two groups of

k players, females and males, and denote their strategy profiles by x̄ =

(x1, . . . , xk) and ȳ = (y1, . . . , yk) respectively, viewed as row vectors.

Fix some constant δ > 0. We consider games that can be described by

a k × k matrix M = {mij} with entries ±1. The payoff for female i is

K(ui) where K(t) = t for |t| ≤ 1 and K(t) = t/|t| for |t| > 1, and ui,

the untruncated payoff of female i, is given by

ui(x̄, ȳ) = δxi

∑
j

mijyj = δxi · (MȳT )i.

The payoff for male j is given by K(vj) where the untruncated payoff

of male j is given by

vj(x̄, ȳ) = −δyj

∑
i

mijxi = −δyj · (x̄M)j.
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Notice that the impact of every such game is 2δ. Also, from the defi-

nitions of the untruncated payoff it follows that

(2)
∑

i

ui(x̄, ȳ) = −
∑

j

vj(x̄, ȳ)

for every profile (x̄, ȳ).

By Lemma B.1 below, for every sufficiently large k and δ = 20/
√

k <

30/
√

n there exits a k × k matrix M with the property

(3) #

{
1 ≤ j ≤ k : |(x̄M)j| > 1

δ

}
> k/3

for every strategy profile x̄ of the females.

Fix a strategy profile x̄ for the females and let ȳ be a profile such

that all the males play 1/3–best response to x̄. From the definition of

vj it follows that vj > 0 whenever |vj| > 1/6 (since by changing his

strategy a player inverts the sign of his untrancated payoff). Therefore,

by (3) it follows that

∑
j

vj(x̄, ȳ) > k/3 ∗ 1 + (2k/3) ∗ (−1/6) > k/6.

By (2), it follows that ui(x̄, ȳ) < −1/6 for some female i. Since every

player inverts the sign of her payoff by changing strategy it follows that

female i does not 1/3 best-respond to ȳ. ¤

4. Varying strategy sets

The results of the previous section focus on the case where the strat-

egy sets are fixed while the number of players is increasing. One may

also be interested in the case where strategy sets are allowed to grow
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with the number of players. This is the case studied in the current

section. First, we establish a trivial existence result where the bound

on the impact is independent of the number of strategies in the game.

4.1. Theorem. Let ε > 0 and m ∈ N be arbitrary. Then every game

in L(n,m, δ) for δ = ε/2n admits a pure ε–equilibrium.

Proof. Let a ∈ A be an arbitrary strategy profile and let a∗ be a strat-

egy profile such that a∗i is a best response to a−i for every player i. Then

a∗ is an ε–equilibrium. Indeed, for every player i and every deviation

d ∈ Ai one has

fi(d, a∗−i) ≤ fi(d, a−i) + (n− 1)ε/2n ≤

fi(a
∗
i , a−i)+(n−1)ε/2n ≤ fi(a

∗
i , a

∗
−i)+2(n−1)ε/2n < fi(a

∗
i , a

∗
−i)+ ε,

where the first and third inequalities follow from the Lipschitz property

of fi and the second inequality follows from the definition of a∗. ¤

The following theorem shows that, for games with unbounded strat-

egy sets, the bound in Theorem 4.1 is the best possible (up to a con-

stant).

4.2. Theorem. For every even n there is a game in L(n, 2n/2, 1/n) with

no pure 1/8–equilibrium.

Proof. Let the number of players be even n = 2k, and let the strategy

set of each player be {+1,−1}k. Like in the previous proof, we divide

the players into two groups, females and males, and denote their strat-

egy profiles by x̄ = (x1, . . . , xk) and ȳ = (y1, . . . , yk) respectively. The
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strategy of female i is given by the vector (xi[j])
k
j=1, and similarly the

strategy of male j is given by the vector (yj[i])
k
i=1.

The payoff to female i is

ui(x̄, ȳ) =
1

4k

∑
j

xi[j] · yj[i],

and the payoff to male j is

vj(x̄, ȳ) = − 1

4k

∑
i

xi[j] · yj[i].

The game has impact 2/4k = 1/n but no pure 1/8–equilibrium: For

every strategy profile of the opponents, every player can guarantee

1/4. Therefore, in every 1/8–equilibrium every player should get at

least 1/8. But this is impossible since the sum of the payoffs is 0 in

every profile. ¤

Appendix A. Concentration of measure

We collect here some facts that we use in the proofs.

A.1. Proposition. [8, Corollary 1.17] Let A1, . . . , An be finite sets and

let µ = µ1 × · · · × µn be a product probability measure over A =
∏

i Ai.

Let F : A → R be a real valued function such that |F (a) − F (a′)| ≤ 1

whenever a, a′ ∈ A and #{i|ai 6= a′i} = 1. Then for every r > 0

µ

({
a : F (a) ≥

∫
Fdµ + r

})
≤ e−r2/2n.

A.2. Remark. (i) If the Lipschitz constant for F is δ (instead of 1 as in

the above formulation) then by considering the function F/δ the bound
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on the probability becomes e−r2/2nδ2
.

(ii) By applying the same bound to −F one gets

µ

({
a :

∣∣∣∣F (a)−
∫

Fdµ

∣∣∣∣ ≥ r

})
≤ 2e−r2/2n.

For the case in which Ai = {0, 1} for every i, µ1 = · · · = µn are coin

tosses with probability p for success, and F (a1, . . . , an) =
∑n

i=1 ai the

constant in the exponent can be improved. This is Chernoff bound:

A.3. Proposition. [1, Theorem A.1.4] Let X1, . . . , Xn be i.i.d. with

P(Xi = 1) = 1− P(Xi = 0) = p. Then

P(X1 + · · ·+ Xn ≥ pn + r) ≤ e−2r2/n.

Appendix B. Unbalancing lights

B.1. Lemma. For sufficiently large k there exists k×k matrix M with

entries in {+1,−1} such that

(4) #

{
1 ≤ j ≤ k : |(x̄M)j| >

√
k

20

}
> k/3

for every row vector x̄ of length k with entries in {+1,−1}.

The lemma has an interesting interpretation: Consider an array of

k × k lights, each can be either on or off. Assume that for every row

there is a switch, such that if the switch of row i is pulled then all the

lights in that row are switched (from on to off or off to on). Then the

lemma says that there exists some initial configuration of the lights

such that whatever switches are performed on the rows, many columns
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will be unbalanced (i.e. will have much more lights on than off or vice

versa). Alon and Spencer [1, Section 2.5] use the probabilistic method

to prove that for every initial configuration it is possible to switch lights

to unbalance the matrix. We turn the probabilistic method ‘on its

head’ to prove that there exists some initial configuration for which any

switching will result in an unbalanced matrix. The argument follows

the proof of lower bound in the classical discrepancy problem [1, Section

13.4]

Proof. Fix k and let Mk×k = {mij} where mij are independent random

signs. For a fixed x̄, the entries of z = x̄ ·M are i.i.d, and each zj is

distributed like the sum of k independent random signs. Thus, by the

central limit theorem

P

(
|zj| ≤

√
k

20

)
k→∞−−−→ 1√

2π

∫ 1/20

−1/20

e−τ2/2dτ < 1/25

Let Ex̄ be the event that (4) is not satisfied. Then Ex̄ is the event that

there are more than 2k/3 successes in k independent trials with proba-

bility for success smaller than 1/25 . From Chernoff inequality A.3 we

get

P(Ex̄) ≤ exp
(−2k (2/3− 1/25)2) < 1/2k.

Since there are only 2k possible x̄-s, it follows that P (∪x̄Ex̄) < 1.

Therefore, for some choice of M none of the Ex̄ occurs, as desired. ¤
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